
Project no. 257438

CONTRAIL
Integrated Project

OPEN COMPUTING INFRASTRUCTURES FOR ELASTIC SERVICES

Architecture Design and QoS constraints matching algorithms
in Federations

D2.2
Due date of deliverable: July 31st, 2011
Actual submission date: September 5th, 2011

Start date of project: October 1st 2010

Type: Deliverable
WP number: WP2
Task number: T2.2

Responsible institution: HP-IIC
Editor & and editor’s address: Lorenzo Blasi

Hewlett-Packard Italiana S.r.l
Innovation Center

via Grandi, 4 - 20063 Cernusco Sul Naviglio (MI)
Italy

Project co-funded by the European Commission within the Seventh Framework Programme
Dissemination Level

PU Public
√

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Revision history:
Version Date Authors Institution Section affected, comments

0.0 11/06/11 Lorenzo Blasi HP-IIC Table of Contents
0.1 01/07/11 Emanuele Carlini, Massimo

Coppola, Patrizio Dazzi, Gia-
como Righetti

CNR First draft of federation key objectives and architecture

0.1.1 08/07/11 Patrizio Dazzi CNR Minor contribution to Sec. 3.2
0.1.2 12/07/11 Philip Kershaw STFC First additions to 2.3
0.2 12/07/11 Matej Artac XLAB Federation API section
0.3 13/07/11 Lorenzo Blasi HP Draft content for sections 4.2, 4.3, 4.4. Version for the

first internal review
0.4 24/07/11 Lorenzo Blasi HP Completed content for sections 4.2, 4.3, 4.4; drafted

content for 4.5
0.45 25/07/11 Emanuele Carlini, Patrizio

Dazzi
CNR Edited sections 3 and 4, added Architecture module,

Scenarios, Coordination
0.46 27/07/11 Emanuele Carlini, Patrizio

Dazzi
CNR Added Provisioning, Mapping

0.47 30/07/11 Giacomo Righetti, Emanuele
Carlini

CNR Added Federation Deployment, Application Model

0.48 01/08/11 Giacomo Righetti CNR Diagrams to pdf, Deployment revised.
0.5 02/08/11 Christian Temporale HP Introduction; completed section 2.2

0.55 02/08/11 Giacomo Righetti CNR Updated structural view of federation-support archi-
tecture, edits to 3.2, 3.2.1, 3.2.2

0.6 04/08/11 Christian Temporale HP Executive summary
0.65 04/08/11 Giacomo Righetti CNR Edits to Architecture modules, security-related se-

quence diagrams, changed some module names
0.67 09/08/11 Giacomo Righetti, Massimo

Coppola
CNR Image Manager, edits related to internal reviewers

comments
0.7 09/08/11 Philip Kershaw STFC Fixes to section 5.2.7
0.8 11/08/11 Chris Kruk STFC Added and corrected sections 2.3.1, 2.3.2 and 3.2.4
0.9 12/08/11 Philip Kershaw STFC Added Security Policies - 2.7 and remaining content

for 2.3
0.91 13/08/11 Massimo Coppola CNR Merged back changes from CNR
0.92 19/08/11 Massimo Coppola CNR Edits to sections 2,3,4 to apply internal reviewer com-

ments.
0.93 25/08/11 Massimo Coppola, Patrizio

Dazzi, Emanuele Carlini,
Giacomo Righetti

CNR Updates to sections 2,3,4 – roadmap, scenarios, algo-
rithms.

0.94 31/08/11 Massimo Coppola, Patrizio
Dazzi, Giacomo Righetti

CNR Final version of sections 2,3,4.

0.95 03/09/11 Lorenzo Blasi HP Revised recent changes.
1.00 05/09/11 Massimo Coppola, Patrizio

Dazzi, Giacomo Righetti
CNR Final document.

Reviewers:
Guillaume Pierre (VUA) and Piyush Harsh (INRIA)

Tasks related to this deliverable:
Task No. Task description Partners involved◦

T2.2 Architecture design of the federation management support,
and its revision for the second implementation

CNR∗, INRIA, STFC, HP-IIC

◦This task list may not be equivalent to the list of partners contributing as authors to the deliverable
∗Task leader

Executive Summary
This deliverable analyses both functionality and algorithms for Contrail Feder-
ations and provides an architectural design which takes into account aspects of
Identity management and Security.

The Federation plays a central role in Contrail: users access Contrail resources
through the Federation, which is one the main selling points of Contrail. A Fed-
eration can be seen as a bridge between cloud users and cloud providers, since it
mediates between users’ requests and providers owning the resources.

The document starts with an overview of the key functionality offered by a
Federation; then it introduces a model describing the relationships between the
entities involved in a Federation. The analysis takes into account aspects of se-
curity, administration of user identities and management of cloud providers, as
well as tracing those aspects and functions to the requirements gathered in the
first phase of the Contrail project. In the final release, the Contrail Federation will
manage multiple providers, possibly including external cloud providers such as
Amazon and Azure.

The analysis of the coordination of different cloud providers by means of their
SLA is not a trivial problem and it requires the utilization of optimization al-
gorithms. For this reason, as implementing all the functionality at once is not
realistic, two different scenarios – a basic one and an advanced one – have been
identified; the two Federation prototypes to be released according to the Descrip-
tion of Work aim at implementing those two scenarios.

The Federation architecture is discussed from different perspectives: a static
view showing Federation layers and internal components, a dynamic view show-
ing the interactions between modules and a deployment view showing how soft-
ware components are deployed into available hardware.

In the analysis of Federation algorithms, a big issue is the management of
SLAs on different cloud providers. The difficulty comes from the fact that a Fed-
eration is not just a simple broker, but plays an active role and mediates between
the aims of the final user and those of the set of providers. A Federation, in ad-
dition, may be seen itself as a provider. Once understood the real added value
offered by the Federation in a cloud ecosystem, it becomes apparent that a Feder-
ation may also be a business entity earning money from its services. This implies
that a Federation should also handle typical business issues, such as risk man-
agement, for being profitable. For instance, when a SLA is split between several
providers, the Federation must manage prices but also penalties, both with users
and providers: a SLA violation from a provider may result in an economic loss
for the Federation.

Finally, flexibility and usability of the interfaces play a critical role in a Cloud,
hence they also do in Contrail Federations. Three different kinds of interfaces have

1

been defined: a graphical web User Interface, a REST interface and a command-
line interface. In CONTRAIL, the same REST interface could be used to access
both providers and the Federation, thus simplifying the overall implementation,
and allowing for all standard interfaces (e.g. OCCI) to be laid on top of both. A
further advantage is in the opportunity to compose Federations and providers in a
transparent way, allowing to exploit the Federation as a single cloud provider.

As already pointed out in D2.1, WP2 activities intrinsically overlap with other
work packages, especially WP3, WP7 and WP10; Federation details on topics
discussed in other deliverables are properly referenced in this document.

2

Contents
1 Introduction 6

1.1 Scope of the document . 6
1.2 Document Structure . 6
1.3 Terms definitions . 8

2 High-Level Federation Functionality 9
2.1 Key objectives . 9

2.1.1 Federation Non-functional Requirements 12
2.2 Federation Model . 13
2.3 Identity Management . 15

2.3.1 Single sign-on . 15
2.3.2 Federated Accounting 16
2.3.3 User Account Auditing 16
2.3.4 Federation User Identity Protection 17
2.3.5 Levels of Assurance . 17

2.4 Provider Management . 18
2.5 Application Mapping and Deployment 18
2.6 SLA coordination . 19
2.7 Security Policies . 20

2.7.1 User Policies . 20
2.7.2 Cloud Provider Security Policies 21

2.8 Federation Coordinator . 21
2.9 High Level Scenarios . 22

2.9.1 Preliminary release . 23
2.9.2 Basic Scenario . 24
2.9.3 Advanced Scenario . 24

2.10 Roadmap . 25
2.10.1 Features provided by the preliminary release 27
2.10.2 Features provided by the first release 27
2.10.3 Features provided by the final release 27

3 Architecture 29
3.1 Overview . 29
3.2 Structural Description . 30

3.2.1 Layers . 30
3.2.2 Core Federation Modules 31
3.2.3 SLA Organizer . 35
3.2.4 Security Modules . 36
3.2.5 Adapter Modules . 37

3

3.2.6 SLA Management . 39
3.3 Behavioural Description . 42
3.4 Deployment Description . 45

4 Algorithms 48
4.1 Application Model . 49

4.1.1 Abstract Task Interaction Graph 50
4.2 OVF generation from SLA / SLA generation from OVF 53
4.3 Checking SLA-OVF compliance 55
4.4 SLA-based provider lookup . 57
4.5 SLA splitting . 58

4.5.1 Service-based SLA splitting 62
4.5.2 Availability-Based SLA Splitting 63
4.5.3 Performance-based SLA Splitting 64
4.5.4 Further issues of SLA splitting 64

4.6 SLA Coordination . 67
4.6.1 Baseline coordination . 69
4.6.2 Migration-based coordination 70
4.6.3 Rebalancing coordination 73

4.7 Mapping . 73
4.8 Provisioning . 75

5 Federation Interfaces 79
5.1 Web Interface . 79

5.1.1 Federation Administration 80
5.1.2 Provider Administration 81
5.1.3 Cloud Federation . 82

5.2 REST Interface . 85
5.2.1 Addressing the entities 85
5.2.2 HTTP Verbs . 86
5.2.3 Contrail API resources 86
5.2.4 HTTP rendering . 87
5.2.5 Relation of the Contrail Federation API with the OCCI . . 89
5.2.6 Obtaining the resource usage 90
5.2.7 Authentication and Authorisation using REST 90

5.3 Command-line Interface . 92

6 Conclusion 94

A Federation API REST Resources 95

4

B Federation API CLI Reference 103
B.1 Commands by category . 103

B.1.1 Federation users commands 103
B.1.2 Cloud provider commands 104
B.1.3 SLA template commands 105
B.1.4 SLA commands . 106
B.1.5 Appliance commands . 106
B.1.6 Deployment document commands 107
B.1.7 Network commands . 108
B.1.8 Storage commands . 108
B.1.9 Image commands . 109
B.1.10 Virtual machine commands 110
B.1.11 Reporting commands . 110

B.2 Command usage permissions . 111

Bibliography 114

5

1 Introduction

1.1 Scope of the document

The purpose of this document is to provide the architectural design of the fed-
eration support for Contrail, starting from the key objectives of the federation,
including the various forms of QoS constraints, and proceeding to analyze its im-
plementation in greater and greater detail. After discussing the design from the
functional, behavioral ans structural points of view, the document describes the
main algorithms used in the federation and what are the interfaces exposed by the
federation.

1.2 Document Structure

The document is made of 6 main sections and 2 appendices.
Present section 1 is the Introduction, it describes the scope of the document

and its structure, including the definitions of the main terms and acronyms used
hereafter.

Section 2 describes the High level functionality of the federation. After an
introductory description of the key objectives pursued by a federation, it presents
a federation model, showing the entities a federation is made of, including its
actors and the relationships between them.

We analyze all the specific topics which are relevant to the Federation Work-
package of Contrail (WP2), as well as many cross-WP topics which link to Secu-
rity (WP7) and SLA management (WP3). We describe how the federation deals
with user identities and with providers, how it is managed and what are the feder-
ation goals with respect to deployment of applications, management of SLAs, and
support for security policies. Finally, we present a roadmap including all the func-
tions previously described, stating when they will be made available by Contrail
within an evolutionary release cycle.

Two main scenarios are discussed, a Basic Scenario corresponding to a proto-
type satisfying a subset of the requirements, and an Advanced Scenario that is the
reference for the foreseen final release. The technological complexity of imple-
menting QoS constraints over a distributed federated platform clearly affect the
two depicted scenarios. The time-line and foreseen roadmap includes both.

Section 3 describes the federation architecture, by providing a structural and
a behavioural view. In the structural view, layers and composition of the internal
modules of the federation are described in detail. In the behavioral view, interac-
tions among the components are analyzed both in the basic and advanced scenario;
as the two scenarios differ in the way the federation support is distributed across

6

resource providers, deployment diagrams show how the federation components
are deployed onto physical resources in both cases.

Section 4 is a collection of specific algorithms used throughout the implemen-
tation of the federation: Task Interaction Graphs for the Application model; trans-
lations between SLA and OVF languages; SLA-OVF compliance checks; lookup
of cloud providers on the basis of SLAs; SLA splitting and SLA coordination;
scheduling and mapping of resources; provisioning on multiple providers.

Section 5 describes federation user interfaces, which come in three different
flavours. The web graphical user interface is intended for the various classes
of users (federation administrators, cloud provider administrators, cloud feder-
ation users). A REST interface allows to interact with federation resources (SLA,
appliances, networks, storage, images, virtual machines and reports) via stan-
dard HTTP verbs. A command-line interface mainly addresses the administration
needs at different levels (federation, cloud provider or SLA management) but is
also available to ordinary users.

Section 6 is the conclusion of this deliverable.
Appendices provide technical details about the federation interfaces. Ap-

pendix A describes the different resources available through the federation REST
interfaces, while Appendix B contains the list of commands that the different
classes of federation users can invoke via a command-line interface.

7

1.3 Terms definitions

Term Meaning
API Application Program Interface
CLI Command Line Interface
DBMS Data Base Management System
FRM Federation Runtime Manager (see §3.2.2)
GAFS Global Autonomous File System
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IaaS Infrastructure as a Service
OVF Open Virtualization Format
OpenID Open standard providing decentralization of users’ authentication
OAuth A security protocol for enabling a resource owner to delegate short

terms access rights to that resource to some third party
PDP Policy Decision Point
PEP Policy Enforcement Point
PaaS Platform as a Service
QoP Quality of Protection
QoS Quality of Service
REST Representational State Transfer
SAML Security Assertion Markup Language
SLA Service Level Agreement
SLO Service Level Objective
SPL SLA-based Provider Lookup (see §4.4)
TIG Task Interaction Graph (see §4.1)
TLS Transport Layer Security
UML Unified Modeling Language
VEP Virtual Execution Platform
VIN Virtual Infrastructure Network
VM Virtual Machine
WS Web Services

8

2 High-Level Federation Functionality
In this section we first recall the key objectives of the Contrail federation model
and of the underlying software architecture (section 2.1). We then present the
abstract federation model in section 2.2 and provide a more in-depth analysis of
the different sets of features that will be provided by Contrail federations (sections
2.3 to 2.8).

Whenever these features rely on widely accepted technology, as it mostly hap-
pens for the security-related topics of sections 2.3, 2.7 and 2.8, we directly track
the requirements gathered in the requirement analysis phase of the project that
motivates those features.

For modules within Contrail main focus of research and related with feder-
ation code development, the match among requirements and features is instead
more analytically presented in the following section 2.10, where the development
roadmap is described.

2.1 Key objectives
A federation can be considered as a bridge linking cloud users and cloud providers.
As the role of the federation goes beyond mere interface adaptation, federation
services act as mediators between users and providers. From a user’s perspective,
the components and the services supporting the federation (we will refer to them
as federation-support in the rest of the document) act as a broker for the resources
owned by providers participating in the federation. As each provider has its own,
potentially different, mechanisms and policies for managing resources, the goal
of the federation-support is to provide translation and mapping mechanisms for
matching user needs by exploiting federated cloud providers.

The pay-per-use concept relies on the existence of a formally agreed SLA be-
tween the user and the provider(s), and the ability to monitor, enforce, and account
service use and QoS. Besides the resource selection functionality across multiple
providers and the consistent management of resources, a Contrail federation co-
ordinates the SLA support of cloud providers. Indeed, as cloud providers have
their own SLA management mechanisms which are useful to exploit, the role of
the federation is to setup, coordinate, and enforce a global SLA, eventually nego-
tiating SLAs with providers on behalf of the users. This leads to the possibility
of a vertical SLA management, that is the integration of the SLA management
mechanisms of the PaaS and IaaS stacked layers of a Cloud platform. This kind
of vertical integration is already in the scope of SLA@SOI [19, §8.2], allowing to
design SaaS and PaaS services which are provider-invariant. Our design applies
the same approach to supporting the interaction between a Contrail federation and
public as well as private cloud providers. Hence, after delegating the main SLA

9

management to the providers, the federation-support will monitor the SLA agreed
and will react to any violation with the aim, if possible, of correcting the applica-
tion behaviour before the user-agreed SLA is affected. The rest of the section lists
the key objectives of the Contrail federation.

Federation-level User ID Management A federation has to provide users with
mechanisms allowing them to specify their preferences about cloud providers and
resources. Federation-support manages the user identities required to access the
cloud providers; it also allows users to inspect their current and historical usage
of resources (accounting, billing).

The task of protecting personal user-related information, like user identities,
is only the first stone when building security into a federated cloud approach.
One of the problems related with federations is to save the users the burden of
authenticating with resources belonging to different cloud providers, especially as
many of the action on the resources have to be automated and performed 24/7.
The federation should exploit proper mechanisms and credentials, in accordance
with both user preferences and authentication support of the providers.

Security and protection Security plays an important role in the federation
layer design as well as in the whole Contrail project, and directly affects the ac-
ceptance of the Contrail platform by potential customers. In the Contrail context,
security and protection have a double scope.
• both the users data and their applications should be protected from unau-

thorized accesses and modifications. The federation should protect users
from each other: preventing them from harming other services and from
snooping on another one’s job or data.
• the federation shall protect itself from service providers and administrators.

The federation shall not entrust any specific provider with user information
whose confidentiality exceeds the stipulated level of trust for the provider,
or that causes a security threat to the security of the federation management
itself.

This means that (1) the federation architecture needs its own mechanisms to eval-
uate and manage trust, (2) the federation’s software infrastructure will often play
as an independent third-party between users and providers, allowing for enhanced
enforcement of properties which in other environments rely solely on institutional
trust.

Application Mapping and Deployment With respect to applications, the fed-
eration has two core tasks. First, the federation has to provide a mapping between
users’ application and federated providers. This task is carried out according to

10

both user requirements and user preferences, as specified in the execution con-
straints and in the SLA. In order to effectively set up and enact the applications
mapping, deployment, and execution, the federation exploits static (related with
general properties about cloud providers) as well as dynamic information (mainly
based on the current provider resources). The actual mapping is a multicriteria
problem, so any reduction in its size helps solving it in practical time, whether it
is pruning unfit/unreliable providers or sorting them according to some aspect of
their expected SLA (e.g. reliability).

The same mapping issue can resurface after the deployment phase and during
the application execution, if additional resources were required or a renegotiation
of the user agreement was triggered.

SLA Management The federation support has to provide mechanisms that man-
age the SLA at IaaS federation level possibly by employing the SLA management
mechanisms available at the providers.

To begin with, the federation support will manage external systems (i.e. Con-
trail providers) as well as systems operating according to different protocols (i.e.
external, public providers).

Following the SLA@SOI approach, a set of SLA management components
are built into the federation core. A hierarchical SLA negotiation is performed
between the user and the federation, which requires one or more negotiations
among the federation and the providers. The easy case, i.e., a single provider
is able to host the whole application, leads to simple negotiations, deployment,
and well understood federation margins with respect to resource costs and SLA
reliability.

Contrail also offers mechanisms for the decomposition of the application and
the associated SLA to cope with the case where no single provider has resources
and services matching the user SLA and to exploit the real value of the federation
as well. The application is deployed onto multiple providers, each one is in charge
of the SLA management for the portion of application it holds. The user-agreed
global SLA will be then affected by SLA violations at the providers as well as by
misalignment in the behaviour of the application parts.

In the general case, in addition to monitoring SLA violations from portions of
the application (i.e. from single providers) and possibly taking corrective actions
for those violations, the federation will have to coordinate the partial SLAs, as
explained in Section 2.6, in order to ensure that the overall SLA is reliably satisfied
without having to perform massive over-provisioning.

11

2.1.1 Federation Non-functional Requirements

In addition to the functional commitments, the federation-support has also to ad-
dress specific non-functional requirements. They are mainly related with platform
scalability, flexibility and reliability.

We shall definitely stress that the distinction between functional and non-
functional requirements applied to the federation is completely different from that
ordinarily applied to programs and applications.

Most of the classical non-functional goals of application execution, e.g. per-
formance and reliability, once the application gets deployed on a Cloud (in ac-
cordance with an agreed SLA) become functional requirements for the service
provider and, as such, have been mentioned in previous paragraphs1.

What is left in the non-functional specification of the federation are key aspects
of the federation which do not immediately affect the realization of any specific
business case of the federation support, but they are paramount to allow a wide
acceptance of the federation support developed by the Contrail consortium.
Open-source The whole core platform shall be open-source licensed. This non-

functional requirement is a project choice and a DoW constraint.
Performance of the federation core is the result of the architecture design, of the

algorithms used, and of the distributed cooperation mechanisms within the
federation. If we look at the incoming flow or service negotiation requests
and management actions2 we can see federation performance as a combina-
tion of the Response Time of the interfaces, of the Efficiency which can be
achieved in managing the requests, and of the Availability that the federation
is able to offer.

Scalability with respect to the federation size (number of users, providers, ser-
vices, active applications, . . .) is addressed by design: (1) by defining a po-
tentially very distributed architecture whose basic components can be also
used as a centralized solution (2) by a decentralized leveraging of all the
management mechanisms of service providers.
Similar Flexibility is also aimed at when adapting existing state-of-the art
software solutions to work within Contrail (e.g. security-related infrastruc-
tures).

Reliability and Robustness of the federation architecture are essential features
underlying and granting practical value to all the adopted QoS and QoP

1Granting a specified QoS (or dealing with a compliance failure) is a functional commitment
for Cloud providers. This applies to the federation support too. Besides performance, a major con-
cern of the federation-support is security. Contrail introduces specific QoP terms in its SLA model,
so that most security guarantees become functional requirements on the federation platform.

2Those are meta-actions outside the scope of formally agreed SLAs on IaaS and PaaS re-
sources.

12

mechanisms.
These considerations influence the design of the federation-support, presented

in Section 3.

2.2 Federation Model
This section describes an abstract model representing the entities involved at Fed-
eration level and their relations. The model shows how a Contrail Federation
should be organized and which are the main objects that each Federation actor
will be able to interact with. The model is the basis both for the Federation archi-
tecture (described in Section 3) and interfaces (which will be detailed in Section
5 and in the appendices A and B).

Contrail also defines another abstract model: the Provider model (described in
deliverable D10.1 [15]), which represents entities involved at Provider level. As
the Federation model is the basis for the Federation API, the Provider model is the
basis for the Provider API. The two models contain some entities which, even if
similar in their name, can represent different, linked objects, or different aspects
of the same object.

As an example, the “Appliance” entity in the Federation model is an item
in the Federation catalog of resources, an item which is offered to Federation
users. While this Federation’s “Appliance” entity represents a potentially running
appliance, with all its potential constraints and parameters, in the Provider model
described in D10.1 the appliance entity — named “cAppliance” — represents
an actually running instance of the appliance, which is fully specified (except
possibly for its yet unexploited elasticity margin). Obviously there should be a
link between the two objects: each Federation level Appliance object will hold a
list of references to its running instances (cAppliance objects).

Another example is the SLA entity defined as “cSLA” in the Provider model of
D10.1 that only describes the infrastructure-related aspects of a SLA. A full SLA
in the federation model will contain much more information, such as specification
of higher level services and related guarantees, upscaling and downscaling rules,
price and penalties for the offered service.

The Federation model is shown in Figure 1. Model entities can be grouped in
5 types, showed in different colors in the picture:

• Federation entities
The central entity in the model is the Federation entity, which associates a
list of Provider entities, all bound by a common FederationAgreement.

• Provider entities
There are 2 types of Providers: the ContrailProvider and the External-

13

Federation

Provider

ContrailProvider ExternalProvider

1

FederationUser

Resource

1

1

SLA Template

CloudAdministrator

FederationCoordinator
UserProfile

1

1

SLA

Account 1

1

Application

Appliance

ExecutionConstraintSet 1

1

FederationAgreement

1

1

1..*

OVF file
1

1

1..*

11..*

UserAttributes

1

1..*

1
used-by

InternalSLA

ExternalSLA

1

1..*

1

1..*

1

1..*

1..*
0..*

0..*

0..*

0..*

0..*

Figure 1: Federation Model

Provider; if the cloud Provider is federated inside Contrail, it is a Contrail-
Provider; otherwise -like Amazon, for instance- it is an ExternalProvider.
The FederationAgreement does not apply in case of ExternalProvider.

• User entities
Federation users belong to 3 categories: FederationUser, FederationCoor-
dinator and CloudAdministrator. FederationUser is the normal final user of
the Federation. A FederationCoordinator is a special user that administers
the Federation; it inherits from FederationUser. Since the Federation deals
with one or more cloud providers, a CloudAdministrator is a user who ad-
ministers a given Provider. Each FederationUser includes an UserProfile
entity, describing roles and credentials of a given user: in fact an UserPro-
file includes the Account entity containing the credentials to be used with a
given Provider, a set of UserAttributes entities specifying user constraints,
and one or more SLAs agreed with the Federation (ExternalSLA: see also
SLA entities below).

• SLA entities
A SLATemplate is the generic entity from which a real SLA is derived. A
SLATemplate is in turn a specialization of the generic Resource entity. An
SLA is a component of a Federation; in general there are more than one
SLA in a Federation. Among SLA entities, it is important to distinguish

14

between ExternalSLA and InternalSLA. The two separate entities allow the
federation to act as a smart mediator between the user and the providers.

– An ExternalSLA is an SLA agreed between a FederationUser and
Contrail. A UserProfile of a FederationUser may include one or more
ExternalSLA.

– An InternalSLA is an SLA agreed between Contrail and a Provider. a
cloud Provider may include one or more InternalSLA.

While the External and Internal SLA may even coincide (the Federation
acting as a pure broker), in the most general case a set of InternalSLA
may be specifically negotiated by the Federation in order to complete the
negotiation of an ExternalSLA. Normally an InternalSLA is negotiated af-
ter the acceptance of the ExternalSLA with the user; however, there might
cases where the Federation pre-agrees InternalSLAs with one or more cloud
providers, in order to anticipate future users’ needs.

• Resource entities
The Federation aggregates a set of Resource entities. In Figure 1 we do not
explicitly model the full list of resources, including storage, networks and
related services, in order to focus on the key entities for federation manage-
ment. Apart from the aforementioned SLATemplates, other interesting ex-
amples of Resource are the Appliance and the Application entities. An Ap-
plication is used by a FederationUser and is composed by a set of Appliance
entities. Applications are represented by one or more OVF File (OVFFile)
and a set of execution constraints (ExecutionConstraintSet). OVF Files and
Appliances can be entities composing a SLATemplate.
Clearly, cloud Providers themselves need Resource entities, as they offer
services based on Applications and Appliances.

2.3 Identity Management
The federation manages user identities. These identities are the keys to access
to individual cloud provider accounts under a given user’s control. As such, the
management and protection of this information is critical.

2.3.1 Single sign-on

In Contrail, there are requirements (see D2.1 [16]) stating the need for single sign-
on. In the context of Contrail, there are two meanings to the term single sign-on
which are orthogonal to each other: the ability to manage multiple cloud provider
accounts with a single overarching federation account, and the second, the ability

15

to devolve the authentication credentials of that federation account to an indepen-
dent Identity Provider. All users have a single federation account for managing
multiple cloud provider accounts, but the way in which they authenticate to that
account could in itself involve some single sign-on mechanism. It is helpful to
think of this from the perspective of layers. At the top layer, a user authenticates
with the federation either directly, e.g. username and password, or by some means
of single sign-on, e.g. Shibboleth or OpenID. This process binds their credentials
to some account held at the federation layer. This account itself has a binding to
the layer beneath: one or more cloud provider accounts.

Considering WP2-FIM-01, then, this applies to the abstraction of individual
cloud providers beneath a federation layer. This is the primary motivation for
single sign-on. It enables the management of a user’s identities for each of the
cloud providers that the Contrail federation supports under a single account with
the Contrail federation. This raises issues of confidentiality: any given user, must
entrust their individual cloud provider credentials with the federation. There is a
second issue, i.e., interoperability. The federation must support the authentication
mechanism used by the various cloud providers supported.

The second requirement (WP2-FAM-01) is an outward facing one in that it
concerns how a Contrail federation identity can integrate with other identity man-
agement systems. This would enable a user with an existing identity from another
Identity Provider to sign into the Contrail federation. For example, a user may
have an existing Shibboleth identity with a home academic institution. Rather
than create a new identity for the Contrail federation the user should be able to
use its existing Shibboleth ID. This should also apply for other examples such as
eduRoam or the IGTF PKI.

2.3.2 Federated Accounting

It should be possible for the user to obtain aggregated statistics, and accounting
data from the individual cloud providers (WP2-FLA-06). This will necessitate
access rights for the federated accounting service to accounting services in the
individual cloud providers. To do this, it will also need to be able to access the
federation to individual cloud provider account mappings for any given user.

2.3.3 User Account Auditing

Stale user accounts are a security risk to the system providing openings for an
attacker to gain unauthorised access. A number of measures can be put in place
to mitigate. User activity can be monitored (for example, last login time, last
password change made) and any accounts where activity has elapsed for an ex-
tended period should be disabled (WP2-FLA-03). Records of federation IDs for

16

accounts that have been disabled or deleted will need to be retained. This is needed
to avoid the possibility of accounts being recycled and new users being inadver-
tently granted the privileges of another existing account.

2.3.4 Federation User Identity Protection

Federation user accounts need to be carefully protected since they hold access
information to multiple cloud provider accounts managed by the associated user.
Individual cloud account information needs to be encapsulated and stored in such
a way as to be isolated to prevent unauthorised access (WP2-FLA-01). Where
possible, user delegation technologies should be employed to avoid the need to
store sensitive cloud provider account information. For example, the user of proxy
certificates [9], a means of enabling an entity to act on behalf of a user with their
access rights for a limited time and OAuth [13], a newer technology which pro-
vides a means to delegate limited access rights to some third party. In many cases,
however, existing authentication mechanism supported by cloud providers will
not support delegation and it will be necessary to store individual cloud provider
account credentials.

Where, single sign-on is used to enable a user to authenticate to the federation,
safeguards should be put in place to ensure these are executed by a secure means.
For example, with Shibboleth, the enforcement of a limited set of trusted Identity
Providers from a given federation. Also, with OpenID, it can be made more secure
by stipulating transport layer security to enforce a white-list of acceptable Iden-
tity Providers. Each authentication mechanism should carry with it an associated
assurance level as described in the following section.

2.3.5 Levels of Assurance

Levels of assurance provide a metric to quantify the degree of certainty about a
given security process. This is typically a given authentication mechanism but
can also include the registration process by which an individual entity obtains an
account, identity tokens used in a system or mechanisms by which one party can
assert to another that a user has authenticated [25]. For Contrail, the ability to
record the level of assurance is important to secure sensitive information such as
biomedical data (Deliverable 2.1 [16] WP2-FAM-03). Access to such data should
not be permitted if a user has used processes with low levels of assurance.

Dependent on the security technologies adopted, strategies can be adopted to
communicate the levels of assurance used: with OpenID, the PAPE (Provider Au-
thentication Policy Extension) mechanism [1] and SAML provides the Authenti-
cation Context [12], With PKI (Public Key Infrastructure) based authentication, a
level of assurance can be inferred from the trust roots (issuing CA [Certificate Au-

17

thority] certificates) used to issue a given certificate. Different CAs are associated
with different levels of trust. A metric for each authentication method needs to be
agreed for the system. Immediately following authentication, the given Relying
Party should associated the level of assurance value with the user’s login session.
This should be communicated to other consumers, so that authorisation decisions
to access resources can be made taking this value into account.

2.4 Provider Management
In order to participate in a Contrail federation, a provider has to offer a certain
set of functionality. This functionality refers mainly to the features the providers
make available for the federation-support in order to allow it to register users, to
negotiate and coordinate SLA, to submit OVFs and to manage the lifecycle of the
applications that are in execution.

The federation issues a user registration request, provider by provider, when
a new user registers to the federation. To this end, each provider has to expose a
proper interface allowing the federation to submit/specify a proper user name and
a user password.

Each provider has also to offer an interface allowing the federation to negotiate
an SLA on behalf of the user. In case of Contrail clouds it means to make avail-
able an interface supporting a well-defined set of SLA@SOI mechanisms [19], as
detailed in the Deliverable 3.2 [17]. A provider shall also allow the federation-
support to interact with the local provider SLA@SOI Manager to coordinate the
SLA activities among different cloud providers.

A cloud provider has also to make available to the federation the mechanisms
for the submission of appliances in the form of OVF [14] files.

Each provider has to allow the federation to gather information about run-
ning applications as well as the actual status of resources. Unfortunately, not all
providers would like to share information about their infrastructure, neither static
nor dynamic. This is true in particular for public providers like Amazon. How-
ever, even providers of Contrail-based clouds can decide to share only a limited
amount of information. It is worth noting that this kind of choice can condition
the business model of the Contrail federation as well as can condition the function
driving the cloud selection.

2.5 Application Mapping and Deployment
In the federation, we consider an application as composed by: (i) a set of appli-
ances and (ii) a set of execution constraints that provides the user requirements on
a per appliance basis. An appliance identifies a set of VM images strictly cooper-
ating to realize an application fundamental block (e.g. a pool of web servers, or

18

a firewall and back-end database combination) and often sharing similar require-
ments and constraints with respect to storage and network resources.

The mapping module adopts a two-step algorithm, where the first step per-
forms a coarse-grain filtering of the available providers, reducing the problem
size for the second step.

In the first step the scheduling and mapping module collects both the appliance
descriptions and the associated execution constraints. It employs the information
to discard cloud providers that do not satisfy some requirements; for instance
some provider may need to be ignored due to geographic constraints on resources
imposed by the user, or because specific resources are unavailable temporarily or
permanently unavailable there.

The second step exploits the shortlist so produced in devising and providing
a mapping plan for all appliances. While in principle there is a huge number of
solutions for mapping appliances to services, several hypotheses are exploited.
• Groups of similar appliances are mapped as a block, reducing the size of

the problem by transforming program structure into provider locality.
• Dedicated libraries/solving engines can be used in order to solve the related

optimization problems, like e.g. the GNU Linear Programming Kit [5] for
large-linear and mixed integer optimization.
• Heuristics can be applied to drive the mapping along specific criteria, like

the foreseen economic cost or the foreseen performance or reliability. Since
these heuristics can be used to sort the available mapping options, we will
investigate the option to allow the user to specify them, or to select which
combination of heuristics to use for a given application, e.g. “given the SLA
is obeyed, ignore further performance gain margins and select the resource
set with minimal cost”.

2.6 SLA coordination

In the Contrail project we assume that every cloud provider belonging to the fed-
eration has proper mechanisms to deal with the SLA descriptions regarding the
appliances it has to execute. Most of those mechanisms and the underlying for-
malism are inherited from the SLA@SOI [23] project. In particular, the SLA
management yielded by Contrail cloud providers is based on three main entities:
(i) SLA, (ii) SLA Template and (iii) SLA Manager.

The SLA is a structured description of user and appliance requirements, which
is derived by a SLA Template and approved both by the user and the provider after
a specific negotiation phase.

A SLA Template provides a customizable base that can be exploited in order
to derive specific SLAs.

19

A SLA@SOI SLA Manager monitors a running appliance and reacts in case
the appliance misbehaves with respect to its associated SLA. The actions enacted
by a SLA Manager include intra-cloud appliance migration, appliance reconfigu-
ration, and network set-up.

The federation should intervene and coordinate the involved SLA managers,
in case they were unable to enforce the SLA of one or more appliances. To this
end the federation extends the SLA@SOI structure, (i) by including new mecha-
nisms to address specific needs in SLA coordination and (ii) by moving existing
SLA@SOI mechanisms at federation level.

The need for active SLA coordination comes for the observation that for many
applications, unless considerable widespread overprovisiong is performed via the
partial SLAs, the overall SLA might not be granted with enough certainty (al-
though satisfied on average). As an example, it is often enough that a critical part
of the application is in violation to jeopardize the user SLA, and this is an issue
that that the penalty mechanism of the single providers cannot generally compen-
sate for.

The federation-support thus extends the SLA management above the level of
the providers in a hierarchical way, employing provider-level actions (e.g. rene-
gotiation, migration, Cloudbursting) to coordinate multi-provider execution.

2.7 Security Policies
In this section, we consider the security policies provided by the federation to
support both clients and cloud providers. Considering clients first, user identities
are managed at the federation level (requirements WP2-FLA-04 and WP2-FLA-
05). Users may be registered with a username and password at the federation,
(here, the federation is acting as an Identity Provider). Alternatively, they may
choose to use an account from another Identity Provider using single sign-on (for
example OpenID or Shibboleth). Whatever means is used, each user is represented
with a unique identity in the federation layer.

2.7.1 User Policies

Various attributes will be associated with federation user identities (WP2-FS-02).
For example, the authentication method(s) used by a user and the associated levels
of assurance (see section 2.3.6). It may also be necessary to hold contact informa-
tion such as e-mail address for notification purposes (WP2-FLA-09, WP2-FLA-
11). Attribute information may be pushed over an authentication channel to a
relying party or else the relying party may pull attribute information it needs from
an Attribute Authority (see section 3.2.4 Security Modules). An attribute release
policy is needed to ensure that user attribute information is protected. This would

20

consist of a list relying parties that have the required permission to access given
user attribute information.

There are number of ways this could be configured:

• Static information at account creation could set a number of accepted rely-
ing party identities;

• Users maintain profiles in their federation accounts which determine trusted
relying parties and their access rights over given attributes;

• A dynamic model in which, when a relying party requests user attribute
information the user is prompted to grant or deny permission;

• When a user adds an account for a given cloud provider certain permissions
are granted for that provider to access given attributes for that user.

A fundamental feature of the federation layer is the ability to manage multiple
cloud providers on behalf of users. A given user’s account metadata will associate
their federation account with multiple cloud provider accounts (WP2-FLA-12).
Further, WP2-FLA-13, implies the ability for multiple federation accounts to ac-
cess a single cloud provider account. To support this capability, these accounts
will need to be managed with group-based access policy: to access a given cloud
provider account within a given set of constraints you must be a member of this
dedicated group. Careful management and validation of these policies will be
critical to establish trust for both users and cloud providers. Administrators will
require appropriate privileges to access these account mappings (WP2-FLA-10).

2.7.2 Cloud Provider Security Policies

Each cloud provider supported by the federation requires associated policy meta-
data to govern access to it. From WP2-FLA-15, this data will need to include a
list of federation accounts that are registered to use it as a means to block unau-
thorised access requests. This metadata will also need to encapsulate usage policy
and enforce recorded usage (WP2-FLA-07, WP2-FLA-08).

2.8 Federation Coordinator
The role of the federation coordinator defines the entity in charge of the set-up and
maintenance of the federation. We purposely used the term coordinator instead of
administrator as it best fits the responsibilities of the role, and it underlines the
differences from the role of provider administrator.

The designation of a coordinator(s) can follow from an agreement among
cloud providers who want to federate, or can be the choice of a single organi-
zation proposing itself as the first seed of a Cloud federation. In each case, more

21

people can enjoy the coordinator role as 24/7 supervision may be required in a
federation.

The coordinator uses a proper, dedicated, interface that is described in Sec-
tion 5 and in the appendices. The coordinator is mainly involved in extraordinary
maintenance of users accounts, federation policies, and in the definition of the fed-
eration structure itself via the addition/removal of providers and federation access
points.
User account management is largely automated via web interfaces, but the co-

ordinator may be involved in special cases, e.g. in account suspensions or
removal due to resource misuse (requirements WP2-FLA-07, WP2-FLA-
11, and WP2-FLA-14 defined in [16]).

Federation composition The coordinator is in charge of enabling new providers
that join the federation, as well as of removing those that either decide
to leave the federation, or critically misbehave (use cases WP2-UC01 and
WP2-UC02 in [16]).
It is worth noting that the decision to accept or reject a new provider is
based on a form of institutional trust that the coordinator is merely asked to
certify and materially perform (e.g. by exchanging certificates or inspect-
ing software installations). The same may hold when removing existing
providers, although some kind misbehaving, e.g. security issues, can lead
to immediate actions.

Role and Policy Administration The coordinator materially defines federation
subsidiary roles (e.g. user groups) and federation policies (requirement WP-
FS-02 in [16]). In addition to ordinary policies for authorizing users/roles
to specific services and resource allocations, Contrail can also use policies
to trigger federation-wide warnings and changes ([16] requirements WP2-
FLA-07, WP2-FLA-08, WP2-FCM-01 to WP2-FCM-04). These triggering
policies can exploit the federation monitoring infrastructure to indirectly
affect the application of ordinary service policies. As an example, consider
a policy that defines how the reputation of providers changes when certain
events happen or when a certain feedback is received by a user.

2.9 High Level Scenarios
The overall goals and the whole set of functions discussed so far will be provided
by the final version of the Contrail federation-support. We approach its implemen-
tation by following an evolutionary development path. A number of intermediate
versions will thus be released before the final full-featured version. Each release
will provide a super-set of the functionality provided by the previous one, with
new functions targeting additional project requirements. As major landmarks we
define two main scenarios, representing specific evolution stages of the federation

22

support.
Before describing the scenarios, we provide early details on a preliminary

version which is expected to be ready before the first Contrail release, a working
prototype which is mainly aimed at validating the technical solutions.

The first real scenario refers to a basic, centralized implementation of the fed-
eration functionality. Centralized means that the federation has a single access
point that can reach the different providers. The access point can receive simple
applications, manage their SLAs and gather simple, static information about the
cloud providers. The mapping schema is driven according to a straightforward
objective function.

The second scenario, which targets the second Contrail release, will rely on
a distributed structure of the federation-support, it will include research results
about support for multi-criteria object functions and enhanced SLA coordination.

A quick comparison of the first release and of the two main scenarios we
present, simply based on the features they support, is reported in Table 1. More
detail is given in the Roadmap Section 2.10.

2.9.1 Preliminary release

Work Package 2 will provide a preliminary prototype before the first official re-
lease of the Contrail project. This version of the prototype will not be fully inte-
grated with the other Contrail subsystems, however it will provide a reduced set
of functionality whose aim is to give an initial proof of the concepts described in
this deliverable.

This preliminary version will consist in a federation support able to perform
the identity mapping of users but that will likely not fully deal with new user
registration. The prototype will accept applications for submission, but without
allowing users to negotiate an SLA with the provider, i.e., the applications are ex-
ecuted on federated cloud providers in either a best-effort or a fixed-SLA fashion.
This version of the federation-support will not deal with all the complexities of
moving the appliances to the providers, by assuming that all the appliances com-
posing the applications of the users are already accessible by the cloud providers.

The preliminary release prototype will address the issue of integrating the fed-
eration core with the VEP and the OpenNebula systems, taking into account a
preliminary release of the security subsystems (e.g. addressing static authoriza-
tion instead of the full UCON model, see Deliverable 7.1 [18]). Basic integration
with the VIN, the GAFS ad a subset of the ConPaaS modules will be attempted
for this prototype.

23

2.9.2 Basic Scenario

This scenario describes the features of a very basic cloud federation support. In
order to use the resources of federated providers, each user has to register to
federation in order to obtain a federation-level account. Behind the scenes, the
federation-support creates, on behalf of the user, an account in each federated
cloud provider. In this scenario the user can neither select for which provider to
create her accounts nor provide any pre-existing accounts.

After the registration, a user can submit her applications to the federation.
Each application is represented by a single OVF file that contains the set of execu-
tion constraints directly related to the appliances, and by an SLA proposal derived
from providers’ SLA templates. The federation exploits the SLA proposals and
the OVF constraints to drive the providers selection phase. A user can condition
the selection phase by selecting a predefined ranking criteria (realized as an objec-
tive function), such as cost minimization and completion time. In this scenario a
user can select only one objective function at a time. After the selection phase, the
federation negotiates the SLA proposals with the selected provider(s). The details
of the SLA negotiation process are given in Figure 5 of Section 3.3. One of the
limitations of this scenario is that the SLA splitting (as well as the corresponding
virtual images) is bounded to a limited number of aspects (e.g. storage and com-
putation). As a consequence, the split can be performed only on a service basis
(see Section 4.5) and consider no more than two providers.

2.9.3 Advanced Scenario

This scenario describes the features of an advanced cloud federation support. It is
presented by highlighting the differences against the basic scenario.

In addition to the features provided by the basic scenario, the user after the reg-
istration can customize her account by specifying which are the cloud providers
she wants to use. Moreover, the user can indicate to the federation any pre-existing
accounts she already has for certain clouds. In this case the federation-support
creates user accounts only for the clouds for which the user didn’t indicate any
pre-existing account. Each user can also specify general preferences that con-
versely from the basic scenario the federation shall consider for every application
submitted by that user (e.g. all my application must stay in Europe).

Like in the basic scenario, after the registration, a user can submit her appli-
cations to the federation. However, now the application can be represented by
multiple OVF files as well as multiple set of constraints. Even the selection phase
is enhanced in this scenario: now the user can select multiple objective functions
to maximize among a set of predefined ones. She can also specify a weight for
each function, representing its importance. Then, in this scenario, the SLA result-

24

Preliminary Basic Advanced
Features
Identity
management

Single Sign On User registration Fully customizable ac-
count mapping

Distribution centralized centralized distributed
Application
description

single OVF single OVF multiple OVF

Application
deployment

forward to low-level
provider

based only on static
information about
providers, single objec-
tive function

based on both static
and dynamic informa-
tion, multiple objective
function, general user
preferences

SLA
coordination

N/A basic SLA management enhanced SLA manage-
ment

Parameters
Number of
providers

1 – 4 ≈ 10 ≈ 100

Number of
access points

1 1 ≈ 100

Table 1: Features related to the actual releases of the federation

ing from the negotiation can be split in several parts, according to the distribution
of the virtual images among the federated cloud providers. The split can be per-
formed on a service, resource or performance basis (see Section 4.5) or even a
combination of them.

In this scenario the federation can take advantage of resources belonging to
external, private and/or public cloud providers.

2.10 Roadmap

According to the Contrail description of work, the WP2 has to release two feder-
ation prototypes. The first one is due at month 18. It consists in a basic federation
support providing a set of functionality that allow users to interact with the feder-
ation in a way compliant with the description of the basic scenario. The second
release is due at month 32. It represents the final version of the federation support.
This prototype will consist in a full-featured federation support.

As already mentioned before, in addition to these releases, the Work Package
2 will provide intermediate releases starting from a preliminary release, that is
expected to be presented around month 12, providing a limited set of functions.
Table 2 lists how the requirements are mapped for each release.

25

Preliminary Basic Advanced
Requirements
Identity
management

WP2-FIM-01
WP2-FIM-04

WP2-FIM-07
WP2-FAM-02
WP2-FLA-05
WP2-FLA-06
WP2-FS-02

WP2-FIM-02
WP2-FIM-05
WP2-FIM-06
WP2-FAM-03
WP2-FLA-03
WP2-FLA-04
WP2-FLA-09
WP2-FLA-12
WP2-FCM-04
WP2-FSA-05

Provider
management

WP2-IAS-05 WP2-FS-05
WP2-IAS-01

WP2-FLA-16
WCP-ARC-02
WP2-VEP-01
WP2-PGD-06

Security WP2-FLA-04 WP2-FLA-05
WP2-FLA-07
WP2-FS-01*
WP2-FS-02

WP2-FLA-08
WP2-FLA-09
WP2-FLA-15
WP2-IAS-02

Application
mapping and
provisioning

WP2-PR-01 WP2-FS-06
WP2-PGD-01
WP2-EDD-03
WP2-PR-02
WP2-MAP-01

WP2-FCM-05
WP2-FS-04
WP2-MAP-02

SLA
organization

WP2-FS-06
WP2-PGD-01
WP2-PGD-05
WP2-EDD-03
WP2-SLA-01

WP2-FS-04
WCP-ARC-02
WP2-PGD-04
WP2-MPS-01
WP2-SLA-02
WP2-SLA-03

Federation
coordinator

WP2-FLA-07
WP2-FLA-14
WP2-FCM-01
WP2-FS-02

WP2-FLA-08
WP2-FCM-04

Non-
functional
features

WP2-FSA-01
WP2-FSA-02
WP2-FSA-04
WP2-NF-01

Table 2: Mapping of requirements over the Contrail federation scenarios.

26

2.10.1 Features provided by the preliminary release

The preliminary release offers a limited set of functions. Users are able to access
all Contrail resources with a single account mapped with multiple credentials on
local providers (requirements WP2-FIM-01, WP2-FIM-04, WP2-FLA-04). Users
issue application provisioning by submitting a single OVF file (WP2-PR-01). Ap-
pliances repository is local to cloud providers (WP2-IAS-05).

2.10.2 Features provided by the first release

In the first release, users (potentially without any cloud provider account) are is-
sued with a federation account (requirement WP2-FAM-02). To this end the fed-
eration assigns to each user a unique ID (WP2-FLA-05) and a role (WP2-FS-02)
within the federation. The federation-support is able to register each user to ev-
ery cloud provider (WP2-FIM-07) and to keep track of the users resource usage
(WP2-FLA-06). Each user has associated a threshold quota for resource consump-
tion (WP2-FCM-04). The federation interrupts user activities if the threshold is
overtaken (WP2-FLA-07). In addition, the federation coordinator is able to ban a
misbehaving user (WP2-FLA-14). The federation guarantees users isolation both
from external environment (i.e. user resources are not accessible from outside,
requirement WP2-FS-05) and from other federation users (WP2-FS-01).

Users can select applications from a federation-level images repository (WP2-
IAS-01). The first release allows user to provide SLA proposal (WP2-SLA-01)
about applications on a limited number of aspects, which can be statically evalu-
ated (WP2-MAP-01) and include geographical constraints (WP2-FS-06). Never-
theless, SLA proposals may be defined on different subsets of an application (WP-
PGD-01). The SLA enforcement exploits specific interface used by an application
to export monitoring information (WP2-PGD-05). This release supports a basic
management of SLA violations arisen from cloud providers (WP2-SLA-03). In
order to execute the application mapping, the federation takes in account user pref-
erences (WP2-PR-02) and offers to users a set of predefined objective functions
that are applied to static information gathered from cloud providers (WP2-MAP-
01). The federation coordinator may influence the mapping by defining reputation
policy about providers (WP2-FCM-01).

2.10.3 Features provided by the final release

The final release allows the federation of a large number of cloud providers, po-
tentially managed with a scalable distributed structure (WP2-NF-01).

With respect to identity management, the federation provides a quick and
consistent authorization service (WP2-FSA-01), logging service (WP2-FSA-02)

27

and accounting services (WP2-FSA-04). Users can customize their accounts by
defining a certain set of preferences, which include: (i) accounts linked to spe-
cific cloud providers (WP2-FIM-02, WP2-FLA-12), (ii) ranking criteria affect-
ing cloud provider use (WP2-FIM-05) and their associated costs (WP2-FIM-06).
The federation-support provides mechanisms for encouraging users to periodi-
cally check the consistence of their account data (WP2-FLA-03) as well as a vir-
tual bill system to apply the provider virtual costs to the accounted usage data
(WP2-FSA-05).

To each user a quota is associated for resource consumption. The final feder-
ation release notifies the users whenever a certain threshold is reached (a defined
soft-limit) in order to prevent unexpected interruptions of user activities (WP2-
FLA-08). This implies an event notification system, which raises events related
to applications state modification (e.g. when a user application has been executed
WP2-FLA-09). An authorization system prevents users from exploiting resources
that they are not authorized to use (WP2-FLA-15).

Users can provide both SLA proposals and already negotiated SLAs (WP2-
SLA-02). The SLA attributes that users can specify are extended and include also
abstract terms about the application behavior (WP2-PGD-04). The federation-
support deals with SLA attributes regarding the QoP enforced by the executing
platform (e.g. storage and network encryption) (WP2-FS-04). In addition to the
standard violation management supported by the first version (WP2-SLA-03), this
prototype is able to react to violations performing activities that includes inter-
cloud elasticity (VCP-ARC-02), inter-cloud migration (WP2-VEP-01), as well as
cloud-bursting (WP2-MPS-01).

The mapping and deployment features are enhanced compared with the ones
of the first version: advanced cost models (WP2-FCM-05) allows users to de-
fine their own functions; dynamic information about provider resources (WP2-
MAP-02) can be exploited to define cost functions. This version of the federation-
support is able to aggregate and exploit even resources that are not proper clouds,
given that these entities provide the minimum set of functions required to be fed-
erated (WP2-PGD-06).

This software also support resource sharing among different accounts belong-
ing to the same federation-level identity (WP2-FLA-16).

Also the security of the images executed is enhanced, indeed, the federation
provides features assuring that images can not be altered (WP2-IAS-02).

28

3 Architecture
In this section we describe the architecture of the federation-support to be devel-
oped by the Contrail consortium.

The following Section 3.1 provides a high-level overview of the architecture
and its design principles. Section 3.2 provides a structural description of the ar-
chitecture, with subsection 3.2.6 summarizing the interaction and roles of the fed-
eration modules involved in SLA management.

Within Section 3.3 we provide a detailed behavioural description of the mod-
ules, i.e., how the main functions of the federation-support are achieved by means
of interaction diagrams.

Finally, Section 3.4 reports how the federation-support is deployed. It presents
the deployment description both of a centralized and a distributed federation ac-
cess point.

3.1 Overview
The architecture we show in this and the following sections satisfies the functional
and non functional requirements reported in Section 2.1.1. As it provides the
federation with a user interface and essential services, we aimed for a tradeoff
between the goal of achieving scalability of the federation support and the need to
ease the initial development.

We designed the federation-support architecture in a way that allows to change
from a centralized solution (single access point) to a distributed one (multiple
access points) with minimal disruption3.

The architecture we show is thus to be deployed at each Federation Access
Point. Changes between the centralized case and the distributed one are confined
to very few modules:

• the module encapsulating the State of the federation;

• the authentication module, that may rely on existing technology and have
its own distribution/replication mechanisms.

As shown in Figure 2 (a detailed description will be given in the next section)
the overall schema of our solution is composed by a top interface layer, a middle
layer which contains most of the federation logic, and a bottom layer performing
adaptation to different kinds of providers. A few assumption need to be stated:

• The federation maps required services/resources onto provider ones; this
includes Contrail’s VIN and GAFS as separate providers of connectivity and

3Since allocation decisions are finalized at the providers anyway, this is not a strong additional
constraint on the architecture even in the centralized case.

29

software, whenever they are not encapsulated within a computation provider
(e.g. possibly in Contrail VEP providers).

• The same holds for higher-level PaaS services and in particular for the Con-
PaaS services developed by Contrail. Virtual images supporting the PaaS
functions will be made available by the providers to the federation users,
and will be requested through the Contrail user interface4.

• Inside the federation core, each user is handled via her identity created
within the federation. Any additional identities used by providers are re-
trieved by-need from the User identity module (e.g. adapters can retrieve
additional credentials in order to access a specific cloud or service).

• Authentication at the user interfaces is handled by the REST module, which
interacts with the authentication and authorization modules.

• Policy enforcement (authentication and authorization checks) are implicit in
Figure 2 and are not everywhere detailed. Instead, explicit interactions with
security modules are reported where relevant, or when the subject of the
interaction is triggered by an identity management operation (e.g. identity
creation and management).

3.2 Structural Description

The federation acts as a bridge between users and cloud providers. The federation-
support offers to users, in an uniform fashion, resources belonging to different
cloud providers. A Contrail federation can exploit two kind providers, those based
on the Contrail cloud infrastructure and the ones based on other public and com-
mercial infrastructures. To this extent, the federation-support meets the commit-
ments presented in Section 2, by providing ad-hoc mechanisms to adapt to both
cases.

3.2.1 Layers

As shown in Figure 2 the federation architecture is composed of three layers.
Every layer is in turn composed by modules, where each module addresses a well
defined commitment.

The top-most layer, called interface, gives a view on the federation and pro-
vides proper ways to interact with the federation. The interface gathers requests
from users as well as from other Contrail components that rely on the federation

4The ConPaaS interfaces can be integrated with the federation ones for this purpose. Note that
the federation interfaces described in this deliverable do not yet explicitly support ConPaaS, but
the extension will be straightforward.

30

Contrail Provider

Interface layer HTTP

REST

Federation support

User Identity

GAFS driver VIN driver

CLI

External Cloud
adapters

Core layer

Adapters layer
VEP driver

StateSLA Coordination

SLA Negotiation

SLA Organizer

Provider Watcher

SLA
Management

SLA Template
Repository

Federation Runtime
Manager
Mapping Attribute Authority

Policy
Administration Point

Policy Decision Point

Authentication

Security

SLA
Management

External Provider

Image Registry
Image Manager

Figure 2: The structural view of the federation-support architecture

functionality and facilities. The interface layer includes a CLI and HTTP inter-
face, from which is possible to access to REST services.

The mid layer, called core, contains modules that fulfill the functional (e.g. ap-
plication life-cycle management) and non-functional (e.g. security) requirements
of the federation. In other words, the core layer realizes the business logic of the
federation-support.

The bottom layer, called adapters, contains the modules that retrieve informa-
tion and operate on different cloud providers. This layer provides also a unified
interface that possibly copes with heterogeneity of providers.

3.2.2 Core Federation Modules

The core layer contains the modules that implement the business logic of the
federation. These modules solve the three main commitments demanded to the
federation-support, namely identity management, application deployment and SLA
coordination. These modules are in turn supported in their activities by additional
auxiliary modules. In the following of this chapter we present in detail the mod-
ules that implement the business logic of the federation as well as the state module,

31

which is in charge of the federation state management. We refer to the auxiliary
modules whenever it is necessary.

State The state module collects, aggregates and provides information exploited
by the federation-support. Items in this mass of information are subject to diverse
constraints in terms of frequency, atomicity and consistency of updates, thus dif-
ferent architectural solutions may be needed to fulfil the federation non-functional
requirements of scalability and reliability.

The involved issues become relevant when deploying the federation in a highly
distributed scenario, with many federation access points. The specific purpose of
the State module is to keep the core business logic of the federation unaware of
the distribution aspects, only exposing the choice among different classes of data
services. Each kind of information and the related constraints can be addressed by
specific design patterns, whose use we will investigate further during the project.

Different federation modules ask different kinds of information to the State
module.

• The User Identity module, security modules and the Federation Runtime
Manager need read or write capability to access/manage user identity infor-
mation and system-wide preferences;

• The Provider Watcher needs write capability to keep an up-to-date view of
available resources belonging to federated and external cloud providers;

• The Provider Watcher module and the SLA Organizer gather a characteri-
zation of cloud providers, such as their geo-location, SLA templates, cost
models and peculiar features;

• The Federation Runtime Manager accesses meta-data about providers (rep-
utation, availability) and running appliances (including associated SLA).

Clearly, such an approach requires a proper distributed communication mech-
anism to support the flow of information among the state modules. To this end,
we plan to integrate different distributed communication patterns.

Possible approaches to explore, beside centralized ones, range from publish/
subscribe techniques to epidemic information dissemination (i.e. gossip tech-
niques), when a large amount of low coherency / slow changing information (e.g.
provider history and reputation) must be spread over large federations.

The decoupling of distributed communication within the State module is also
allowed by the fact that most tasks requiring atomicity and strict synchronization
(e.g resource pre-reservation and commitment) have anyway to be performed at
the provider level, thus simplifying the implementation of the federation state.

32

User identity The federation-support provides to each user a federation-level
account. By using this account the user can access to all the resources owned
by the federated cloud providers. In order to interact with different providers,
the federation-level user account is bound with different local providers identi-
ties. The user identity module is in charge of realizing the aforementioned bind.
The actual connection between the module and the providers is done through the
Adapter layer (discussed later).

The access to resources is managed in a seamless way, i.e., once authenticated
to a Contrail federation, users should not be prompted again to access federated
Cloud providers (e.g. single sign-on). The local cloud identities are stored in the
state module. In order to guarantee isolation and data integrity, of the user-related
data, the federation-support takes advantages of the mechanisms and policies pro-
vided by the Work Package 7 dealing with Contrail security aspects. The interface
with those mechanisms and policies is the security subsystem.

Federation Runtime Manager One of the core task of the federation is applica-
tion deployment. This is not a trivial task, since the user will expect the federation-
support to find proper mappings between submitted appliances and cloud belong-
ing to the federation.

In order to devise a good mapping onto the compute, storage and network
services of the federation, the federation runtime manager (FRM) uses a set of
heuristic that consider different aspects, such as to minimize economical cost and
to maximize performance levels. This actual task and the heuristics are imple-
mented by the mapping component, while the FRM is in charge of the orches-
tration between the mapping component, the SLA management system and the
drivers layer. In particular, the FRM is responsible of the application life cycle
management.

The FRM gathers information to cover these aspects from the State module.
The information is both static and dynamic. Static information is mainly related
with general properties about cloud providers; it includes, for instance, their geo-
graphic location, their resource- and cost-models as well as the installed software.
Dynamic information is related to the status of cloud provider resources, as well
as to cloud providers as autonomous entities forming the federation. It is the kind
of information obtained by monitoring resource availability either on a per cloud-
provider basis or by recording and analyzing the past history of each provider
with respect to violated SLA. This information can be exploited to evaluate their
reliability.

Image Manager It is necessary for the federation to take into account how the
images of the actual appliances are managed during the deployment phase. In-

33

deed, moving images is a costly operation that should be avoided whenever possi-
ble (e.g. OVA approach). From the user’s perspective the images can be managed
in two ways: they can be packed inside an OVF archive or referenced within the
OVF files by using URI.

After the SLA negotiation step (described in Figure 5), the federation needs
to submit the (possibly modified) SLA and OVF to each provider (either Contrail
or external); the image links are kept, or the images are downloaded and stored
somewhere, updating the links to the new place. The task of deciding what is the
best storage solution is carried out by the Image Manager. It associates metadata
to the images and decides when is necessary to copy an image or when indirection
can be exploited. The actual metadata are kept inside the State module; however
an Image Registry is introduced to decouple federation code from being modified
whenever State module is modified moving from the centralized scenario to the
distributed one. We keep the option open to have the OVF with the original links
for the first prototypes (either ordinary links or links which actually point to the
GAFS, but the user has to take care of this).

Basically this component tries to place the image in the GAFS, thus gener-
ating a new URI, and uses it with providers (avoid user bottlenecks in case of
repeated data transfers. (Contrail) Providers in turn can directly access the image
an transfer it to the hypervisor hosting the VMs, possibly putting it into a local
cache. The image cannot be cached if the user forbids it via its QoP specifica-
tion (the case of images with sensitive user data). Caching at the provider beyond
the immediate needs of an application implies that there is a schema to let the
federation know what is cached to check its coherency. A mechanism to notify
the federation about local provider image cache updates/deletion will need to be
specified. We will leave detailed specification of the caching strategies for the
advanced architecture.

The hosting of images within GAFS can cause a problem with non-contrail
providers but the GAFS is expected to provide CDMI access, which is standard,
to negotiate access protocols and possibly convert the format. The cache content at
provider is kept until the application is running, and no longer. The UID generated
by provider caches are unique at the provider.

Provider Watcher This component is responsible for the State update, upon
receiving monitoring information from the Adapter layer. It decouples the State
from doing this task leading to a more cohesive architectural design.

The Provider Watcher can receive several information types: SLA monitoring
from providers, updates from providers’ SLA Template Registries, SLA violations
events, resource availability updates.

Not every provider will accept to publish all information flows, e.g. resource

34

availability may well be hidden or only partially disclosed by providers. The
metadata specifying what information is made available by each provider is stored
in the State module.

3.2.3 SLA Organizer

The SLA Organizer is a collection of modules related to SLA management at the
Federation level, which is achieved by leveraging and coordinating SLA agree-
ments stipulated with the federated resource providers. Actual enforcement on
part of the federation is also possible for providers which support limited SLA
capabilities (this is easily the case for many inter-provider network links).

SLA Coordination The SLA Coordination module checks that running appli-
ances comply with the user provided and agreed SLA, and plans corrective actions
as needed. An appliance that does not adhere to the agreed SLA is considered a
misbehaving one. Upon being notified a violation, the SLA Coordination module
logs the event, evaluates the current status of all related appliances and providers,
and tries to define a reconfiguration plan for the application which compensates
the violation.

The Contrail SLA management system undertakes actions that may involve
either a single cloud provider, or, in more complex scenarios, multiple providers
and the federation-support. The latter case happens when the SLA manager of a
cloud provider is unable to address the violation by itself but a coordinate action
is suitable, e.g. acquisition of new resources from a provider, SLA renegotiation
with multiple providers and possibly also forms of active enforcement where a
best-effort SLA term was in place.

SLA Negotiation The SLA Negotiation is a helper module responsible of the
negotiation protocols with providers. Its main purpose is to decouple the protocols
for SLA (re)negotiation from the core Business logic of the Federation Runtime
manager.

SLA Template Repository SLA templates published by the providers are gath-
ered and stored in a proper SLA Template Repository module.

The Federation SLA Template Repository acts primarily as a cache of the
Provider’s SLA Template Registries, supporting scalable SLA-based queries and
user interface template selection within the federation. The repository can as well
holds federation-specific SLA templates not bound to any provider.

As SLA templates are not likely to change often, caching them is feasible and
cheap. The issues related to updating the SLA Template Repository are managed

35

by the Provider Watcher and State modules.

3.2.4 Security Modules

The detailed security requirements have been already defined in D7.1 "Security
Requirement, Specification and Architecture for Virtual Infrastructure". We pro-
vide here only an overview of the functions which are relevant to the federation
architecture. The Security Module are grouped on the right in Figure 2.

There are five components managing security in the federation architecture:
Authentication, Attribute Authority, Policy Administration Point (PAP), Policy En-
forcement Point (PEP) and Policy Decision Point (PDP).

The PEP module is not depicted in the figure, as explained later on. The other
four modules directly interact with the User Identity module and the State module.
The Authentication module also interacts with Federation Runtime Manager and
the Interface Layer.

Authentication User authentication is a keystone in security, a requirement in
order to protects data, to provide confidentiality and to to grant appropriate level
of rights/permissions. Authentication is also a requirement for accounting and
billing, as the usage of resources is correlate with the user’s identity.

In the first implementation user identity is created and managed within the
federation. Identities recognized by other providers have be disclosed to the fed-
eration, thus allowing it to act on behalf of the user (i.e. passing the credentials to
the provider adapters).

Policy Enforcement Point The Policy Enforcement Points (PEPs) intercept the
invocations of security relevant operations to enforce security policy. To this aim,
PEPs are integrated within the architecture components that need to be moni-
tored, i.e., the components that implement the accesses to the system resources
that are considered as security relevant. As an example, this include the modules
devoted to the application deployment on the federated clouds. PEPs suspend the
execution of security relevant operations, communicate the access request to the
PDP, and resume or skip the execution of those operations depending on the PDP
response. To implement the usage control model, PEPs should also be able to in-
tercept the termination of security relevant operations and interrupt the execution
of security relevant operations while in progress when requested by the PDP.

Policy Decision Point The Policy Decision Point performs the decision pro-
cess by evaluating security policies. It is called by the Policy Enforcement Points
(PEPs) when users, classes of users or federation modules (on behalf of a user)

36

need to perform security relevant actions. This activity is important in Contrail for
monitoring resource usage according to the concept of Usage Control with Access
Control, where the decision factors that determine whether a user holds the rights
to operate on a resource are continuously evaluated while the access is in progress.
The PDP, at first, gets the security policy from a repository managed by the Pol-
icy Administration Point (PAP). The PDP exploits the data in the access request,
the security policy, and some other decision factors that are managed by other
components of the authorization architecture, such as attributes or environmental
conditions. If the PDP decides that a user is not allowed to do the action is trying
to perform, the PEP interrupts that action. Actions can be basically a translation of
user level functionality (e.g submit application, federation user registration, etc.),
or in a more refined approach could involve the decomposition of high level ac-
tions to low level ones. For instance, a deploy action can be defined in terms of
the actual steps required (e.g. negotiate SLAs with the providers identified in the
mapping, contact VIN and GAFS providers for the contextualization, access - or
copy - images on the providers). In the usage control model, the PDP is always
active, because when required by the security policy, it continuously evaluates a
set of policy rules while an access is in progress, and it could invoke the PEP to
terminate this access.

Attribute Authority This entity is devoted to store and manage user attributes
paired with subjects and with resources. Examples of user attributes are their
roles. Hence, when the PDP needs the value of an attribute to evaluate the security
policy, it invokes the AA.

Policy Administration Point The Policy Administration Point is the compo-
nent that develops and manage security policies, modifying them when certain
operations do happen (e.g. new users registration). It also has the task of provid-
ing the policy to the PDP when required.

3.2.5 Adapter Modules

VIN, GAFS, VEP Drivers This layer contains the modules that enable the ac-
cess to infrastructural services. These include: (i) network, which is offered by the
Virtual Infrastructure Network (VIN) component, (ii) storage, which is provided
by Global Autonomous File System (GAFS) and (iii) computing power, which is
offered by Virtual Execution Platform (VEP). These components enrich the typ-
ical cloud infrastructural services with additional features targeting federations.
These services are mostly used during the provisioning step in the lifecycle of
applications, that will be discussed in Section 4.8.

37

The VIN should provide APIs to define a virtual network among multiple
virtual machines, both intra- and inter-provider. Also the VIN should provide an
API to know the QoS level of an inter-provider link, and if it is possible, the proper
mechanisms to enforce a given QoS. The GAFS should provide shared data space,
with the possibility for an application spanning in multiple providers to access a
virtual volume. Finally, the VEP provides the proper OCCI interfaces to enable
access to provider resources. Its APIs include mechanisms for reservation and
configuration of resources, and starting and monitoring of machines.

External Cloud Adapters In order to extend Contrail’s functionality onto ex-
ternal clouds and at the same time to maintain modularity, it is necessary to de-
velop the federation logic in a way that is provider-agnostic. This means that each
module of the federation-support shouldn’t know in advance if it is issuing com-
mand to a Contrail provider or to an external cloud. Considering the federation
commitments detailed in Section 2, and in particular the operational requirements
they need, the following operations can be done on a cloud provider: authentica-
tion (login and user registration), appliance deployment, SLA negotiation, SLA
enforcing, and monitoring.

Following the terminology of the Federation model presented in Section 2.2,
accesses to Contrail-specific clouds can be encapsulated inside the ContrailProvider
class, via the VEP driver. Conversely, the VIN and GAFS modules offer a way to
issue inter-cloud level commands and are able to talk to a specific Contrail cloud
using internal mechanisms. The different approach is explainable because we
need a finer control over execution commands rather than on networks or storage
commands. For the same reason, there is a dedicated component performing the
SLA negotiation. Commands to a given type of (non-Contrail) external cloud can
be issued via a type-specific adapter, translating requests from the federation sup-
port into requests that are understood by the provider. This task is assigned to the
ExternalProvider module of the federation Model. This module differs from the
ContrailProvider, and it does not contain any driver supporting the VIN, GAFS,
or VEP. Instead, an ExternalProvider exploits the interface exposed by the public
cloud. In order to address the non-functional scalability requirement, we shall
take care that the adapter does not become a centralization point for the Federa-
tion access point (e.g. by using a separate instance per provider, or multithreaded
adapters).

One of the differences between a Contrail cloud provider and an external one is
that we cannot assume the existence of any Contrail daemon continuously running
inside the external cloud.

Thus, it is also necessary to develop a mechanism to handle monitoring events
from the external cloud. There are two main solutions. The first one implies that,

38

for each deployed application, a VM is coupled with it in the public cloud and for-
wards monitoring information to the federation support. In this solution the user
is required to spend additional money to deploy an additional machine for each
submitted application; the application needs to ignore the additional resources ex-
cept possibly for the sake of sending monitoring information. On the other hand,
detailed application-level information can be gathered and the solution does not
depend on any monitoring functionality made available by the Cloud provider.

A second class of solutions has one component inside the federation that lever-
ages the public monitoring API of the external cloud, and routes events inside the
federation support. Even in this case scalability need to be taken into account, to
avoid the monitoring proxy to be a bottleneck. There is no need to modify the user
application, but monitoring is restricted to those events that the provider chooses
to expose to the users.

3.2.6 SLA Management

In this paragraph we recap the different modules involved in SLA Management
within the Contrail architecture, also addressing the need to provide a match of
the SLA@SOI functions and terminology with the definitions provided in this
deliverable and in Deliverable 3.2 [17]. SLA Management in Contrail federations
includes several functions:
• SLA template browsing / querying
• SLA negotiation
• SLA query / management
• SLA-OVF compliance checking
• SLA-based provider lookup
• SLA splitting
• SLA enforcement / coordination
• SLA reporting / monitoring.

Other functions which in Contrail are related to SLA management are
• OVF splitting
• Appliance/Image management
• Application/Appliance provisioning.
The basis to implement most of the SLA Management functionalities is the

framework provided by SLA@SOI. Several SLA@SOI components can be reused
as a starting point for both Federation-level and Provider-level SLA manage-
ment components. Here only Federation-level components are considered, while
Provider-level components will be considered in deliverable D3.2 [17]. The fol-
lowing Table 3 provides a mapping between SLA Management functionalities,
Contrail architecture components (as shown in Figure 2) and SLA@SOI compo-
nents.

39

Table 3: Correspondences between SLA Management functionality and architec-
ture components in Contrail and SLA@SOI.

Functionality Contrail component SLA@SOI component
SLA template browsing / querying SLA Template Repository SLA Template Registry
SLA negotiation SLA Negotiation Module Protocol Engine
SLA query / management State Module SLA Registry
SLA-OVF compliance checking SLA Coordination Module POC (to be customized)
SLA-based provider lookup SLA Template Repository SLA Template Registry
SLA splitting SLA Coordination Module, POC (to be customized)

Federation Runtime Manager
SLA enforcement coordination SLA Coordination Module PAC (to be customized)
SLA monitoring Provider Watcher (partly) Monitoring Manager
SLA reporting Federation Runtime Manager

Some of these SLA@SOI components require customizations in order to be
usable within Contrail. Two examples are the Provisioning and Adjustment Com-
ponent (PAC) and Planning and Optimization Component (POC). The custom al-
gorithms are detailed in Section 4.

Within the core of the federation architecture, the SLA Organizer shown in
Figure 2 implements most of the listed SLA Management functions, directly or
within it submodules. Some core functions however are implemented by the Fed-
eration Runtime Manager.

The SLA Negotiation module is responsible for the SLA negotiation with
providers. This component implements the SLA negotiation protocol (it embeds
the Protocol Engine SLA@SOI components), collaborates with the Monitoring
Manager [17] to assess the SLA monitorability and stores agreed/being-agreed
SLAs in the SLA registry (which in Contrail federations is contained in the feder-
ation state module).

The SLA Template Repository, already discussed in section 3.2.3, allows the
users to browse Templates offered by different cloud providers and select the SLA
template that most fit their needs.

The SLA Coordination module (called SLA Enforcement component in [17])
implements SLA enforcement and coordination functions. It identifies SLA viola-
tions on all the agreed SLAs and takes actions accordingly (e.g. it can de-provision
resources) as explained in 3.2.3. It also contacts the Provisioning Manager (see
D3.2) to provision (or de-provision) resources.

The opportunity for SLA splitting occurs when a provider is (all providers
are) only able to satisfy a part of the SLA, the remaining part needing further
negotiation between the Federation and another provider. Depending on the actual
algorithm used to detect the situation, the splitting can be performed within the
Federation Runtime Manager, or directly inside the SLA Negotiation module (see

40

4.5).
The SLA Lifecycle Manager component (see D3.2 [17]) implements SLA-OVF

compliance checking. An SLA-OVF compliance check is required in the provi-
sioning step to ensure that the OVF submitted by the user in the provisioning
request is compliant with the previously agreed SLA. As at the federation level
the Federation Runtime Manager is in charge of the lifecycle of application, it
contains the SLA Lifecycle Manager.

The Monitoring Manager component is responsible for collecting monitor-
ing data on the provisioned resources; this data is needed by SLA negotiation for
taking internal decisions and by the Accounting manager to trace resource us-
age (and then support billing). We note that the Monitoring Manager does not
coincide with the Provider Watcher. The latter module has a different purpose
(evaluating provider behavior instead of application behaviour) and actually relies
on monitoring services provided by the former one.

It is evident that the common SLA management schema derived by SLA@SOI
is declined differently at the provider level and in the federation-support, the rea-
son being that the overall action balance changes between the two levels.

The SLA Manager at provider level deals with resources directly; resource
provisioning activities usually outweigh the negotiation process activities and al-
low relatively easy enforcement of SLA constraints.

On the other hand the federation-level SLA Management is the middleman
between a SLA (to be) agreed with the final user and potentially several SLAs
(to be) agreed with as many providers. The Federation does not exercise direct
control on owned resources, it only performs indirect actions through other SLA
Managers, operating on rented resources from several providers.

The agreement negotiation phase is like a “wooden puzzle game”, or more
formally a covering problem where the Federation SLA Manager must find the
best way to combine a selection of the resources to cover the SLA requirements.
Optimization problems associated to covering problems have a general formula-
tion as integer linear programming problems. As cloud and federations deal with
boolean as well as quantitative constraints, our general optimization problem will
likely be formulated as a mixed linear programming problem, which can be solved
with tools like the GNU Linear Programming Kit [5], or by using stochastic and
heuristics methods.

It shall be noted that the actual optimization criteria is itself a matter of re-
search: while provider will usually optimize for their own profit within the con-
straints imposed by the agreed SLA, the federation will have to deal with a more
complex situation, where a tradeoff must be achieved among the gain margin of
the providers, the profit of the federation and the user satisfaction.

At execution time the federation-level SLA enforcement phase is like an equi-
librium game, where the federation SLA Manager shall not violate the user con-

41

straint and not disadvantage too much any specific party in the game, to prevent
that party (a resource provider or the federation itself) from profitably changing
its strategy (e.g. increasing its willingness to default agreed SLAs).

This is a form of Nash Equilibrium between providers and federation, where
at each change in the execution conditions, the optimality of the resource alloca-
tion is potentially re-evaluated (either via mixed linear programming as reported
before, or through stochastic optimization tools, which allow tuning the tradeoff
between approximation and computational load, like simulated annealing, genetic
algorithms or ant colony methods).

3.3 Behavioural Description
In this section we present the main federation subsystems according to their be-
haviour.

Figure 3 shows the steps and the federation modules involved for user regis-
tration. A user connects to the federation interface entering her personal details
(i.e. federation identity and password). The federation interfaces activates the
identity management module. Upon a successful registration, this module creates
a federation user identity and by collaborating with the AttributeAuthority a set
of specific attributes is associated with a user. Then, the PAP module is contacted
to store any user policies. This process can in principle lead to the redefinition of
system level policies. This may not be fully realizable in an automated way, and
may require manual intervention. Then the identity management module registers
the user into every federated cloud provider and the created identities are stored
into the State module to realize the single sign-on support.

Assuming that some sort of authentication has been done, Figure 4 shows how
the federation components interact with respect to authorization of user actions.
Whenever a user issues an action, the FRM retrieves from the user identity mod-
ule the information related to that particular action. As an example, let us con-
sider a deployment action where the information is related to preferences about
providers. In this case, an authorization request is sent to the PDP component
which indicates if the action is authorized; the decision is taken in collaboration
with the attribute authority component. This last interaction is not shown in the
diagram of Figure 4 because it is part of the internal security mechanisms. The
PDP module registers the information about the user, the requested action, and the
authorization outcome. If the user is authorized for the action, the FRM informs
the user and executes the action on her behalf. This procedure is triggered for all
federation-level actions.

Once registered, the user can use the federation services to run applications
into the federated clouds. Each application is associated with a set of constraints
and an SLA proposal. The former of these defines the minimal requirements for

42

Federation
Interface

User Registration to Federation
User

User Identity Provider1 ProviderN...

User Registration to Cloud 1

User Registration to Cloud N

...

User Credentials for Cloud 1

User Credentials for Cloud NUser Credentials
 for Federation

Register User
to Federation

User Credentials
 for Federation

Attribute
Authority

Create Fed. User
attributes

Create Fed.
User Identity

PAP

Store User Policy

Figure 3: Behavioral description of the User Registration process

Federation
Runtime Manager

SUCCESS / FAIL

User

Policy Decision
Point

Action

Confirmation

Authorization Request

execute

PEP

Figure 4: Interaction between the Federation Runtime Manager and the Policy
Decision Point module upon federation-level action requests

the execution of the application. The latter is specified by users on the basis of
her preferences and needs. The SLA proposal is created by the user from the SLA
templates contained in the SLA Template Repository.

Figure 5 sketches the whole process of providers’ selection and service level

43

negotiation. The Mapping module receives from the FRM the application descrip-
tion and SLA proposals. According to this information the module elaborates a
mapping plan, based on a predefined cost model. The plan accounts for objective
functions that consider static and dynamic information about providers. The map-
ping plan can also exploits information coming from the Image Manager in order
to discard mapping plans that imply forbidden deployment on certain providers.
Subsequently, the SLA Management component uses the mapping plan and the
constraints. It interacts with the federated providers in order to negotiate the nec-
essary SLAs for the application. In this phase, the SLA can be split into multiple
sub-SLAs (i.e. which target the SLA subset for a specific provider). Finally the
FRM checks if SLAs adhere to the user requirements. This constitutes the neces-
sary condition for the application decomposition.

Federation
Runtime Manager Mapping

User Constraint Set
and Application Description

Mapping Plan

Negotiation and Splitting

SLA Template
Registry

SLAs

SLA-based provider lookup

Providers List

partial SLAs

Negotiation and Splitting

SLA Negotiation

Figure 5: Provider Selection and SLA Negotiation Process

Whenever the agreement between user and federation providers is confirmed,
the negotiation phase ends and the federation starts the deployment phase. The
activities performed during this phase are discussed in Section 4.8 and depicted
in Figure 6 in full detail. They can be logically split into three main steps: (i)
appliances transfer and contextualization, (ii) appliance execution management
and (iii) appliances de-contextualization.

Transfer and contextualization In this phase the appliances are transferred to
providers. Note that if the providers are aware of the appliance registry location,
this is simply an indication about what appliance to use. Providers send back
deployment information, such as the URIs of the images. This information is in

44

turn passed to VIN and GAFS external components in order to contextualize them.
Note that the order in which VIN and GAFS are contacted depends on the specific
implementation choices.

Execution management In this phase, the FRM manages the execution of the
appliances. When providers start the appliances, they return to the FRM an ap-
pliance handle, which permits to issue operations on appliances. During their
execution the appliances are checked against the negotiated SLA. In case of SLA
violations the SLA Organizer subsystem reacts taking proper actions. Depending
on the extent of the violations these actions can regard the SLA renegotiation or
the application remapping. When appliances terminate, the providers supply an
executive summary, that the federation uses to invoke the de-contextualization.

De-contextualization After the termination of the submitted appliances, the
FRM notifies GAFS and VIN in order to release the resources assigned to the
execution.

3.4 Deployment Description
A UML deployment diagram describes both the distribution of a system in terms
of execution nodes, and how the software components (called software artifacts)
are placed inside the execution nodes. Here we address how different software
components and modules of the Federation SW architecture are deployed on phys-
ical resources.

In fact, an execution node can also be a virtual resource in this context: nothing
prevents the federation-support from running within an hypervisor. However this
kind of virtual resources, if present, are statically allotted to support the federation.

The federation-support comprises two deployment packages: one for a spe-
cific provider and one for the federation access point. The federation access point
package can be deployed either in a centralized way, shown in Figure 7, or in a
distributed one. Only communications between the federation access point and
the providers are shown in the diagrams. In relation to the description of section
3.2.5 two types of Provider are given as an example of components deployment:
a ContrailProvider, that comprises the execution drivers to interface with a Con-
trail cloud provider, and an ExternalProvider, whose internal structure depends
on the specific public cloud it interacts to. In the distributed scenario (depicted
in Figure 8), it will run in possibly more than one provider. Furthermore, some
Contrail clouds will have the federation access point package, while others only
the provider-specific package. In our vision the only component that exchanges
information among the federation access point is the State module.

45

Federation
Runtime Manager Cloud Providers

Appliances submission

Contextualization

VIN & GAFS

Deployment Information

Network and storage map

Start Appliances

A
pp

lia
nc

es
 T

ra
ns

fe
r

an
d

C
on

te
xt

ua
liz

at
io

n
A
pp

lia
nc

es
 E

xe
cu

ti
on

M
an

ag
em

en
t

A
pp

lia
nc

es

D
e-

co
nt

ex
tu

al
iz

at
io

n

Stop Appliances

Decontextualization

Images deployment

Figure 6: High-level behavioral diagram of Application Provisioning

We do not dwell here again in the functions that the state has to provide; from
the point of view of the federation deployment, it suffices to know that distinct
instances of the state module will provide distributed synchronization exploiting
the communication patterns which best fit each specific kind of information the
state can hold.

Each provider has its own adapter level. There is an ongoing integration work
in order to fully describe communications (e.g specific UML stereotypes that iden-
tify communication mechanisms).

46

Webserver CLI REST

SLACoordination

Auth/Authz UserIdentity

RuntimeMng Mapping State

fedAccPnt1:
FedAccessPoint

extProvider1:
External Cloud Provider

contrailProvider1:
ContrailProvider

VEP

SLANegot

VINGAFSVEP

contrailProvider1:
Contrail Cloud Provider

SLANegot

extProvider1:
ExternalProvider

VIN

GAFS

SLATemplateRegistry

ProviderWatcher

ImageMng

Figure 7: UML deployment diagram of the federation support in the centralized
scenario

47

extProvider1:
External Cloud Provider

contrailProvider1:
Contrail Cloud Provider

State

fedAccPnt1:
FedAccessPoint

fedAccPntN:
FedAccessPoint

State

contrailProviderN:
Contrail Cloud Provider

Figure 8: UML deployment diagram of the federation support in the distributed
scenario

4 Algorithms

In this section we discuss what methods and what classes of algorithms we are go-
ing to exploit in the architecture modules described in Section 3. The next section
4.1 introduces the Contrail IaaS application model, which builds upon existing
standards in the aim of both improving provisioning in a federated environment,
and achieving portability and modularity of the application description. Section
4.2 discusses the semantic intersection between the SLA@SOI SLA language
and the OVF language, and its impact on Contrail. Section 4.3 presents a sim-
ple OVF-SLA compliance checking algorithm. We then discuss how to perform
SLA-based provider lookup in Contrail (Section 4.4), how exceedingly demand-
ing applications and their SLA are split in order to leverage federated resources
(Section 4.5). Then we analyze possible approaches to coordinate the resulting
parts (Section 4.6). In the remaining sections we describe our approach to appli-
cation mapping (Section 4.7) and the overall scheme for application provisioning
(Section 4.8).

48

4.1 Application Model

The application model we describe in this section is the view of the application
from the IaaS federation standpoint. Our purpose in explicitly defining the appli-
cation model is to allow managing an application as a composition of generic tasks
and applying mechanisms that perform the mapping between tasks and providers
in a modular fashion.

While requiring the least amount of extension to accepted Cloud standards for
application description, the model shall be able to express
• both requirements on each task and inter-task ones (e.g. properties of com-

putation versus properties of interaction), and in addition
• requirements evaluated on groups of tasks versus requirements which ap-

ply the same to each single task of a group (e.g. aggregate bandwidth vs
bandwidth per task).

At the IaaS level, each application task will be a set of one or more VMs.
Each group of tasks will be a set of task which share some common behaviour.

Let first recall what kind of application descriptors are submitted to a Contrail
federation, before discussing how a modular application model is defined on top
of them.

Open Virtualization Format (OVF) file The OVF is an XML file which describes
the virtual images composing the application as well as the associated exe-
cution constraints and deployment actions. An application is composed of
at least one OVF file.

In order to understand the application model, we need further details about
the structure of OVF files. A single image is defined through the XML tag
VirtualSystem and a collection of images with the tag VirtualSystemCollec-
tion. It is possible to nest multiple collections, thus creating a functional
hierarchy in the description of the application.

SLA offers The SLA offers describe the service level constraints associated with
the application. They are compiled by the user, and ideally derived from the
SLA templates that the providers make available to users. Parts of an SLA
refer to resources by providing their ID, and each ID can either be a full
URI of a resource within a file, or a path which is relative to a file elsewhere
specified.

Deployment Document (DD) is an optional document which supports non-standard
features and additional functionalities when deploying over contrail providers.
The DD can act as an additional link between OVF and SLA (see deliverable
D10.1).

49

4.1.1 Abstract Task Interaction Graph

A Task Interaction Graph (TIG) [22] is a well known structure to represent re-
quirements over networks of tasks. A TIG represents the application as an undi-
rected graph: each node a task and edges the relationships between two tasks. A
TIG is labeled on nodes and edges. In our case the labels describe the constraints
and needs of the application. We do not follow the straightforward approach of
building a TIG where each virtual image is a task. Such detailed representation
leads to a large graph, hindering the process of mapping the application to actual
resources and most likely not increasing the quality of the mapping.

As the reference model of Applications we define an Abstract TIG exploiting
the grouping of resources provided by the OVF entity Virtual System Collection.
In Contrail any service can be a task, e.g. access to storage is a legitimate task.
From the point of view of the Abstract TIG, only the VIN is a special kind of
provider, as the related constraints result in labels on edges of the TIG rather than
on nodes.

We call Mapping of the TIG of an application the operation of identifying
which sets of resources (of any kind, from one or more providers) will be used
to match the application services at provisioning in order to satisfy all constraints
and the SLA.

We assign to OVF collections, as well as to single images, a Resource Class
(RC) which identifies the functional role of images within the application. The
resource class is in fact the id attribute of the collection, so that the base case of RC
is the resource itself. The user can then associate one or more SLA offers to each
RC (the SLA will reference the RC within the OVF instead of the resource). This
is compatible with the plain use of SLAs to specify the behaviour of each single
needed resource, but allows to specify a higher-level SLA for groups of resources.
We will call this group of resources Application Components 5 (see also section
4.6). In addition to ordinary constraints, we can place also aggregate constraints6

on Application Components for instance addressing mutual interconnection and
elasticity. As an entity id is unique within a same file, but not globally unique,
the same resource class can also be reused consistently across different OVF files
(see generic SLAs in deliverable D3.2), allowing for agreed SLAs to be reused for
different OVF files sharing a common structure.

Example Figure 9 shows the OVF of a very simple application, composed by
a database and two web servers (a plain HTTP server and an HTTPS one). The

5The term “component” is used in its more generic sense, not implying the existence of SW
components in the application.

6See also Deliverable 3.2 for a list of SLA terms and for the definition of generic, specific and
hybrid SLA offers

50

SLA_O1{Location="Europe"}
SLA_O2{Reliability="Low"} WHttp

SLA_O1{Location="Europe"}
DBMS

SLA_O1{Location="Europe"}
SLA_O3{Reliability="High"}WHttpS

Frontend: SLA_O1{Location="Europe"}
WS_HTTP: SLA_O2{Reliability="Low"}
WS_HTTPS: SLA_O2{Reliability="High"}
DBMS:SLA_O1{Location="Europe"},
 SLA_O4{Bandwidth="High"}

Frontend

WHttp

DBMS

WHttpS

step 1

Intermediate Graph

Abstract Task Interaction Graph

High Bandwidth High Bandwidth

OVF
<VirtualSystemCollection id=Frontend>
 <VirtualSystem id=WHttp \>
 <VirtualSystem id=WHttpS \>
<\VirtualSystemCollection>
<VirtuaSystem id=DBMS>
<NetworkSection>
// network definition
<\NetworkSection>

Application Description (OVF and SLA)

ste
p 2

Figure 9: Steps to translate an OVF into a TIG

XML attribute “id” in the OVF provides each entity with a Resource Class (RC).
In the example we have Frontend, which represents the generic set of web servers,
WS-HTTP and WS-HTTPS, which differentiate the two types of web servers;
DBMS, which represents the database server. The NetworkSection tag defines
the network that connects the database with the web servers.

The first logical step is to materialize the hierarchy of the OVF file as an inter-
mediate graph (step 1 in Figure 9). The intermediate graph describes the connec-
tions among tasks and maintains the hierarchical relationships from the OVF file,

51

e.g. both web servers belong to the RC “Frontend”.

The second step transforms the intermediate graph in the final application
model, mapping each RC into its associated SLA offers (SLA_O1, SLA_O2 and
so on, in the figure). Note that: (i) a single RC can be associated with multiple
SLA offers (DBMS is associated with SLAO1 and SLAO4) and (ii) a single SLA
offer can be shared among multiple RCs (DMBS and Frontend share SLAO1).

The resulting application model is a flat graph, where the same SLA offers
are replicated on the associated tasks. Tasks only need to keep their basic identity
in order to allow provisioning, and mapping small flat graphs onto resources is
easy enough not to be a bottleneck. Independent negotiation for each task node
is possible if needed, which can positively affect the mapping process. The final
graph represents the input for the application mapping phase, which is described
in Section 4.7.

Pragmatics Our application model exploits collections as containers which con-
vey information provided by the application programmer. This allows to deal with
large applications in terms of their (few) functional components, matching the ap-
plication semantics on top of the aggregate providers’ available resources. As a
basic case, we have unstructured application, as well as applications which pro-
vide only trivial structure. Contrail can handle these “flat” applications and their
one-node TIG, but when multi-provider mapping is needed not all available map-
ping heuristics may have enough information to work.

Implementation issues From the point of view of the TIG application model,
the DD is just an additional indirection in the link between the SLA and the OVF.
For compatibility with less expressive SLA models than the SLA@SOI one, we
can exploit the DD to link the SLA offers with the resource classes.

Resource classes (and hence, SLA offers) are hierarchical: in order to suc-
cessfully deploy an image, all the SLA offers belonging to the parent collections
have to be satisfied. The nesting level of OVF collections is unlimited, but we
only need to exploit containers as classes of resources on which to impose SLA
terms. As of now, 1 or 2 additional nesting levels are needed by application as
class handlers.

When dealing with application made up of multiple OVF files, we can regard
the OVF files as an additional level of containers, as SLAs can obviously reference
OVF files.

52

4.2 OVF generation from SLA / SLA generation from OVF
SLAs are the output of the negotiation phase and describe offered resources and
guarantees about them. OVF (Open Virtualization Format) is a standard format
used to describe multiple virtual resources, their properties and their connections.
OVF is used as input to the Contrail provisioning phase (see D10.1).

A SLA should contain both a service description and guarantees about the
service. In particular for IaaS services the SLA usually contains the description
of the offered resources, such as VMs, RAM, number of cores. The OVF format,
in particular the OVF descriptor, also describes virtual resources. As it is shown
in Figure 10 there is a semantic overlap between OVF and SLA.

Figure 10: Semantic overlap between OVF and SLA

This overlap cannot be easily solved by only inserting resource information
in the OVF and putting references to them in the SLA. This would prevent the
possibility to negotiate SLAs independently from the OVFs to be provisioned.
Contrail will maintain this independence between SLA and OVF at the cost of
replicating some resource information in both formats.

The need arises of handling independent input file in the SLA and OVF for-
mats, and to merge the provided information at some point.

Before provisioning, compliance shall be checked between a given OVF file
(set of files) to be provisioned and the agreed SLA, especially when a generic SLA
has been agreed, and the OVF file was submitted independently. The algorithm to
perform this check will be described in the following section 4.3.

Another functionality which may be needed is the ability to transform part of
the SLA specification into OVF and vice versa. This transformation is not possi-
ble in either direction for a complete document, it can only apply to the intersec-
tion of the semantic domains of the SLA and OVF formats (see Figure 10). The

53

transformation between OVF and SLA is practically possible for the high-level
description of attributes of virtual resources, such as number of VMs, number of
cores, CPU speed or amount of memory.

In the SLA@SOI SLA model [24] the attributes of virtual resources can be
expressed each with a separate Guaranteed.State clause. For example, to
define the amount of memory for virtual machines the following SLA expression
can be used:

MEMORY_VALUE is (less_than_or_equals(10240 MB) and
greater_than(1024 MB)) << 2048 MB >>

guaranteed_state{
id = MEMORY_STATE
memory(VM_X) equals MEMORY_VALUE
// means: 1024<memory(VM_X)<=10240, default=2048 MB

}

The equivalent definition in the OVF format is the following:

<VirtualHardwareSection>
<Info>...</Info>
<Item>

<rasd:AllocationUnits>byte * 2^20</rasd:AllocationUnits>
<rasd:ElementName>2048 MB memory size</rasd:ElementName>
<rasd:InstanceID>0</rasd:InstanceID>
<rasd:ResourceType>4</rasd:ResourceType>
<rasd:VirtualQuantity>2048</rasd:VirtualQuantity>

</Item>
<Item ovf:bound="min">

<rasd:AllocationUnits>byte * 2^20</rasd:AllocationUnits>
<rasd:ElementName>1024 MB minimum memory size</rasd:ElementName>
<rasd:InstanceID>0</rasd:InstanceID>
<rasd:Reservation>1024</rasd:Reservation>
<rasd:ResourceType>4</rasd:ResourceType>

</Item>
<Item ovf:bound="max">

<rasd:AllocationUnits>byte * 2^20</rasd:AllocationUnits>
<rasd:ElementName>10240 MB maximum memory size</rasd:ElementName>
<rasd:InstanceID>0</rasd:InstanceID>
<rasd:Reservation>10240</rasd:Reservation>
<rasd:ResourceType>4</rasd:ResourceType>

</Item>
</VirtualHardwareSection>

In this case, a key OVF element is the optional ovf:bound attribute, which may be
used to specify ranges for the Item elements of an OVF descriptor. In the same way the
same definition of other virtual machine attributes can be expressed either in SLA or in
OVF format.

54

The algorithm that operates this translation is very simple and can reuse the SLA@SOI
code at least in the SLA-to-OVF direction. As for the OVF-to-SLA direction, the input
format (OVF) is an XML file, thus standard XML parsers (such as Xerces [26]) can be
used. The algorithm gets a full SLA (or OVF) file in input and produces OVF (or SLA)
fragments in output describing the entities belonging to the intersection of the two se-
mantic domains. The first step is to parse the input format, creating an object for each
element, according to the abstract model that represents the input format. The abstract
model of SLA@SOI SLAs is described in [24]. The OVF abstract model is represented
by its schema definition (XSD) file, see [14]. The second step is to extract entities of the
input model which are related to the intersection of OVF and SLA domains and map them
to entities of a common semantic model which represents objects of the underlying virtual
resources domain. For example a VM in this common model can be represented as shown
in Figure 11.

The last step is to generate the required output syntax from the common model. Each
object in the common model will have two output methods generating its representation
in either OVF or SLA syntax.

Figure 11: VM representation in the virtual resources abstract model

4.3 Checking SLA-OVF compliance
When the user submits to the Federation an application description (as an OVF file) for
provisioning, he is supposed to have already negotiated the associated SLA with the Fed-
eration. As there is a semantic overlapping between OVF and SLA resource specification,
a check is needed to ensure that the two descriptions do not conflict. In addition, de-
pending on the SLA description used and on additional features, an indirection via the

55

Deployment Document (DD) may be needed. There are two places where the check will
happen.

• The Federation will first check the OVF compliance with the agreed SLA (external
SLA, see sec. 2.2), i.e. that (1) what is required by the OVF is covered by the agreed
SLA and (2) the resource classes referenced in the SLA are found in the OVF. If the
OVF requires resources that do not match those agreed in the SLA (some resource
is not covered by the SLA, or the resource attributes are incompatible), then the
provisioning request must fail.

It is considered a user error to agree on some resources and then submit an OVF
which does not match the agreement. The provisioning request must fail because
in this case the Federation in general doesn’t know about resource availability, if
and how it can be monitored, and a price for the resource has not been agreed.

• A second OVF-SLA compliance check is operated by each federated Provider
when it receives an OVF to be provisioned.

The Provider will receive the OVF from the Federation on behalf of a user. It
will check it for compliance with the internal SLA previously agreed between the
federation and the provider for that user.

As the application may have been decomposed onto several providers, the check
ensures to the provider that no error happened in the splitting phase.

The algorithm to operate this OVF-SLA compliance check will first simplify both the
SLA and the OVF in input eliminating all the clauses not related to the intersection of
the OVF and SLA semantic domains (see Figure 10). After this simplification operation
(indicated as restrict_to_intersection()), the algorithm will generate SLA fragments from
the given OVF (see previous section) and compare those fragments with the agreed SLA.

When the SLA specifies a range for a parameter, e.g. min and max value for the
amount of memory, the corresponding value (or range) requested by the OVF must be
contained within the SLA-specified range.

When the SLA specifies an exact value for a parameter, the OVF value must be the
same (if the parameter is optional, the OVF may left it unspecified).

When a parameter requested by the OVF is not specified in the SLA, and the parameter
is about an entity belonging to the intersection of the OVF and SLA semantic domains,
the compliance check will fail.

The pseudo-code of the basic algorithm follows.

function checkCompliance(O: OVF, S: SLA): bool
begin

O1 = restrict_to_intersection(O)
S1 = generate_SLA(O1)
S2 = restrict_to_intersection(S)
return compare(S1, S2)

56

end

function compare(OvfSLA: SLA, AgreedSLA: SLA): bool
begin

foreach resource in OvfSLA
if resource not in AgreedSLA

then return FAILURE
foreach parameter of resource

if parameter.value not in range specified by AgreedSLA
then return FAILURE

return SUCCESS
end

If a DD has been provided, the compare function will have it as an additional param-
eter and use it to retrieve the resources in the OVF.

If a DD is not provided in input (the SLA directly refers to OVF resource classes), but
it needs to be specified to the following provisioning phases, the compare function can
write it out in its main cycle.

It should be noted that a successful compliance check only guarantees that the re-
quests of the SLA and OVF are not conflicting, but does not ensure that the provisioning
will be successful. The case may be that specific requests are in the OVF which were
not negotiated in the SLA, and prevent provisioning. In general, provisioning failures
after a successful compliance check will be related to entities which do not belong to
the intersection of the OVF-SLA semantic domains. The only solution to the problem in
the Contrail framework is to extend the SLA language to include terms that describe the
useful concepts at negotiation time.

Example The OVF descriptor contains very detailed constraints on specific hardware
to be used for provisioning a virtual machine, and the selected provider does not have that
specific hardware in its data center. Even if the OVF is compliant with the SLA agreed
with the provider, provisioning will still fail if the required resources are not available,
and the OVF does not allow for any replacement.

4.4 SLA-based provider lookup
SLA-based Provider Lookup (from now on SPL) is a functionality which is exploited at
Federation level during the user negotiation phase.

The Federation layer will select the set of providers with which to setup a SLA on
behalf of the user, according to user preferences and applying its own heuristics. The
guarantees required by the user are thus checked against the SLA templates offered by
each federated Provider, in order to shortlist the candidate Providers to be considered in
the SLA negotiation phase.

57

The functionality is also exploited when the Federation has to split a SLA to find
providers that satisfy each SLA fragment, and when cloudbursting is needed and compat-
ible providers must be found.

Each Contrail Provider maintains a SLA Template Registry, which will be based on
the SLA@SOI SLA Template Registry. The component from SLA@SOI should already
support "both metadata-based queries, and QoS-based queries" [19], so the simplest and
more accurate algorithm for SPL will loop on all the Providers executing the desired query
on each registry.

As looping on all providers from all federation access points is neither efficient nor
scalable, a centralized SLA Template Repository is kept at Federation level: in this way
only one query is enough, even if on a quite big registry. The Federation SLA Tem-
plate registry acts as a cache, allowing to shortlist the available providers with a single
query7. This works on the assumption that SLA templates are not likely to change often,
so caching them is feasible and cheap.

The Federation SLA Template Repository can as well hold SLA templates not bound
to any provider, i.e. prepared by the federation coordinators. These templates of course
will be designed in order to match the capabilities of at least one provider.

In a distributed federation scenario, each federation access point keeps a copy of the
SLA Template Repository, which is periodically synchronized with the other registries.
Federation nodes are connected one to each other via the Status module8, whom the syn-
chronization is delegated to.

The current implementation of SLA@SOI for the SLA Template registry allows both
metadata-based queries, where metadata for a SLA template comprises a list of key/value
property pairs, and more general SLA-based queries. Even to use only metadata-based
queries would not be a big limitation as many properties of an SLA can be expressed as
key/value pairs.

4.5 SLA splitting
Normally the Federation will search the best provider to satisfy all user requirements
(see previous section) and will negotiate a SLA on behalf of the user with that provider.
Whenever a single provider cannot satisfy all the execution, quality and/or security re-
quirements, the Contrail federation will need to split the application and deploy it as an
ensemble of cooperating separate parts on different providers.

In order to still leverage the provider SLA management mechanisms, the federation
will also have to correspondingly split the proposed SLA. While this will not be the
most common case, it shows the federation’s added value with respect to single Cloud

7The federation-level centralized SLA Template Repository plays the same role also in the
template selection before the negotiation phase, as user interfaces also query federation templates.

8Depending on the federation size and on the kind of data to broadcast, the status can imple-
ment various centralized and distributed synchronization mechanisms for different classes of data,
possibly even including gossip protocols. On the other hand, gossip is unlikely to be used to spread
critical information like SLA templates.

58

providers, that is the ability to deploy applications with peculiar requirements and beyond
the limits of available resources on single providers.

Splitting of SLAs can happen in different moments of the application deployment,
and with different approaches. We consider two different actors in performing the SLA
splitting, the federation support and any service provider, which will typically correspond
to specific phases in the deployment, i.e. user negotiation and provider negotiation. In the
first case we have a federation-initiated SLA splitting, while in the second case we speak
of provider-initiated SLA splitting. With respect to the split technique, three main types
of SLA splitting will be herein considered.

Service-based SLA splitting when the SLA is split in parts related to different kind of
services or resources. An example is to split the overall SLA into aspects like com-
putation services, permanent storage services and inter-provider network services,
then to select distinct providers for each aspect.

Availability-based SLA splitting or Resource-based SLA splitting when the SLA is split in
order to recruit the same kind of service/resource from more than one provider. The
purpose can be to increase the availability of that resource beyond the possibilities
of a single provider.

Performance-based SLA splitting is a more general case, where the application and SLA
split is performed in order to improve performance and/or QoS (e.g. to provide a
feature similar to Amazon’s Availability Zones), and not because of any negotiation
failures.

It is clearly a form of splitting which is only federation-initiated, that requires more
complex evaluation and search heuristics. It is thus set as a separate case where a
considerable research effort will be needed.

Provider-initiated Splitting The easiest case to specify is when the split of an appli-
cation SLA happens during the negotiation as a provider A is not able to accept the full
set of conditions in the SLA offer proposed by the federation.

The provider, as a negotiation step, can return only the part on which it can agree (see
Figure 12), thus defining an SLA split.

If the split is accepted by the federation, in order to exploit those services which are
available at A the Federation will then need to generate a new SLA with the remaining
conditions and relevant to the remaining part of the application; then a further SLA-based
lookup and negotiation will be performed trying to match the unsatisfied part of the SLA
with a second provider B.

We assume that a Contrail provider will be able to perform a negotiation and pro-
pose a reduced SLA as a counteroffer. For external providers, without the capability of
negotiating all parameters of an SLA, to provide equivalent functionality for deducing a
counteroffer (a partial SLA) may not be possible, it may require additional support, or it
may be replaced by federation-initiated splitting.

59

Figure 12: SLA splitting during negotiation

Splitting will usually be done in the initial negotiation phase, as seen above, but it can
be done also in other phases.

SLA splitting during provisioning can happen if the provider initially selected cannot
guarantee all the requested resources. Depending on the actually agreed SLA, this may
either already be a violation, or just be the result of the provider not being able to rene-
gotiate an SLA for increased resources. The federation will try to avoid defaulting the
SLA with the user, and also avoid restarting the negotiation from scratch (which implies
reporting to the user that the agreed SLA is no longer enforceable). The provisioning can
be fixed by splitting the application and its SLA to exploit other providers. One part can
be left on the same provider, and another one will be negotiated with one (or more) further
provider(s), as shown in Figure 13. Note that in this case the federation may prefer rene-
gotiating with another provider already involved in the application (e.g. provider B), as it
already had the application information and could possibly deploy the needed resources
quickly9.

There are finally multiple cases when SLA splitting must occur even during execution.
Examples are SLA violations, some resources moved from a provider to another, a scaling
request that hits the upper resource limit of the current provider. Again, these cases present

9The net effect of this late SLA split can be seen as a form of work balancing by migration.

60

Figure 13: SLA splitting during provisioning

the same federation goal of not letting the SLA stipulated with the user fail, and can be
dealt with by the technique we already discussed.

Federation-initiated Splitting As the federation maintains up-to date information
about part or all its providers, the initial step of proposing the full SLA to a single provider
can or must be skipped altogether, and the federation is in charge of (at least) the initial
slitting of application and SLA. Concrete cases are related to the federation support having
very precise knowledge of the kind of services each provider can offer (e.g. resources and
appliances), up-to-date copies of the SLA Template registry of providers, and for part of
the providers also having access to resource/service utilization and availability data. The
subcases can be classified in three groups, to whom we can apply the same techniques as
in provider-initiated splitting, except that the federation will have to consider splitting the
application in terms of its components (groups of appliances).

• The kind of services in the SLA offer are not all available in a same provider, due
to the constraint expressed in the SLA and/or to limited offer by the providers. This
case leads to a service-based splitting, which is performed easily by the federation.

• The amount of some required resource is known to never be available at any provider,
due to knowledge about the provider limits and SLA Templates, or to information
about the provider status. Here the split is more complex, falls in the category of
availability-based splitting and can require splitting groups of appliances.

61

• The amount of some required resource is expected as unavailable at any provider,
e.g. by inference from provider negotiation histories. This is a variant of previous
case, where the federation cannot rule out that a single provider is found, but most
likely may save negotiation effort and time by choosing multi-provider provision-
ing right from the start. This case too can be dealt with with availability-based
splitting.

SLA splitting and OVF splitting Splitting an application in order to deploy it on
multiple providers has of course an impact also on the application representation. The
method outlined in section 4.1 exploiting OVF containers allows to identify corresponding
portions of the OVF and SLA. It is thus possible to apply two solutions.

• Define a separate Deployment Document (DD) for each portion of the application,
specifying which parts of the OVF have to be enacted by each Contrail provider.
This way the complexity of the SLA splitting process does not imply OVF modifi-
cations. Maximum flexibility is retained in case of changes after initial deployment
(e.g. elasticity).

• The application (set of) OVF file(s) can be rewritten for each provider in their spe-
cific deployment format, only including the parts needed on the particular provider.
This management overhead is anyway needed for external providers who do not
accept a DD and possibly do not recognize the OVF format.

4.5.1 Service-based SLA splitting

Service-based SLA splitting can be done when the same SLA offer includes multiple ser-
vice requests, which are not all available or accepted by a same provider. This type of
splitting can generate a maximum number of SLAs which equals the number of types of
service (nserv) in the original SLA offer. If the number of SLA to be generated (nSLA)
is less than nserv, there is potentially one solution for each different partitioning of the
set of nserv services into nSLA non-empty subsets. The number of solutions is a Stirling
number of the second kind [7, page 244], indicated with

{nserv

nSLA

}
and computed as{

nserv
nSLA

}
=

1

nserv!

nSLA∑
j=0

(−1)j
(
nSLA
j

)
(nSLA − j)nserv

The actual set of potential solution will be smaller than that if not all providers support
all services. Selection of one solution from the set of potential ones should be done by
optimizing over indicators such as total price, QoS offered, and even the reputation of the
involved providers.

Searching or pruning the set of solutions requires evaluating the potential cost of each
sub-solution (either via models or by attempting a negotiation), in order to evaluate the
interesting indicators, and only then combining the most promising sub-solutions.

As it is already evident from this first simple case, the selection of the best splitting for
a given SLA is a multi-objective optimization problem. For a small number of alternatives

62

a direct comparison can be done to find the optimum solution, where each single solution
can be computed as outlined in section 3.2.6. For a greater number of combinations,
the overall formulation as a mixed linear programming problem is likely to become too
complex, and full exploration of the solution space for the splitting is not practical, so a
metaheuristics approach has to be used on top of the basic problem formulation.

Several integer-problem metaheuristics from operation research can be applied, such
as Ant Colony Optimization[2], Simulated Annealing[8], Tabu Search[4], or Genetic
Algorithms[6]. As of today, it is not possible to specify which of the described method
will suit best to the specific combination of variables and shape of the solution space
presented by the problem of SLA splitting in federations.

4.5.2 Availability-Based SLA Splitting

Availability-Based SLA Splitting or resource-based SLA splitting, addresses the case where
provider A can offer only m of all the n resources required, the remaining (n −m) re-
sources are asked to provider B.

This splitting case focuses on a single kind of service, namely a resource-based ser-
vice, although it can be applied repeatedly to different groups of resources in the applica-
tion (thus nesting it within Service-based splitting).

As an example, if provider A in figure 12 offers all the needed services in the SLA
offer, except for one which does not get enough resources, with availability-base splitting
only that service is affected by the splitting, the other ones being simply copied in SLA
which is to be agreed with provider A.

Clearly, if the remaining amount of resources can not be negotiated with just one
additional provider, dealing with availability based splitting can become complex, due to
the need to monitor and enforce several separate SLAs in order to have the user-agreed
SLA satisfied.

As such, availability-based splitting on more than two providers may be unavoidable
if provider-initiated, but it is managed differently in federation-initiated splitting. Con-
trail federation by default should not explore solutions relying on many providers (thus
also reducing the solution space) unless a specific support pattern exists for very large
resource groups, with dedicated support and special mapping heuristics. As an example,
ConPaas and other combinations of PaaS services may be able to exploit the composed
IaaS platform by replicating their control part on each provider).

In the 2-provider case, the original SLA is reduced during negotiation to n instances
of the specific resource, while the second part of the SLA just contains terms describing
the missing (n−m), and inherits all the other components from the first one.

If otherwise the split is iterated, then the number xi of resources asked to the i-th
provider is a variable influencing the total price and quality of the solution. A form of
weighting shall be applied at mapping time to mark them as suboptimal, and a tolerance
should be added to the SLA portions to take into account for the higher risk of violation
due to resource dispersion.

Again, finding the best split requires solving a multi-objective optimization problem.

63

In addition to respecting all mandatory deployment constraint, the right value of the var-
ious xi is evaluated in terms of the overall price of the solution, of the QoS provided,
and taking into account the reputation of providers (e.g. a larger tolerance is needed for
unreliable providers). In practice, the most general form of service split due to avail-
ability brings in issues which are detailed in the most general case of performance-based
splitting, in the next section.

4.5.3 Performance-based SLA Splitting

The last type of splitting considered here is the Performance-based SLA splitting. This
is conceptually the same as resource-based SLA splitting, but it uses (models of) the
performance of the services in the application as criteria for splitting.

For example when service S hosted by provider A can offer only x transactions per
second instead of the n required y the SLA to satisfy the expected traffic, the remaining
(n− x) transactions per second may be obtained by provider B.

This type of splitting is the most difficult to implement, having to cope with several
issues.
• Service S must be offered by all the target providers. For this reason, SPL must

handle interface-based queries, allowing the Federation to look for providers alter-
native to A with a template registry query constrained to the interface of S.

• If the image for service S is available for distribution, and the Federation can up-
load it to other providers, each new provider may be able to agree only on service
hosting guarantees, and not on performance ones, as the service will be seen as
foreign.

• Service entry points should be common to all target providers and should provide
load balancing across several providers.

• Even more difficult to handle is the case where the service S is not stateless and
needs to operate on shared data. In this case the Federation, along with splitting
the original SLA and negotiating the resulting parts, shall handle the setup of all
the needed shared resources, both in the storage and in the networking domain (e.g.
provide connectivity guarantees that are compatible with the application synchro-
nization needs).

4.5.4 Further issues of SLA splitting

SLA splitting has several other aspects to be analyzed, as the original SLA may not con-
tain only guarantees about performance of services or resources, but also: price, penalties,
QoP guarantees, particular actions, and scaling rules. The splitting strategy will be differ-
ent for each of the listed aspects. As anticipated in section 4.1, we can place constraints
and SLA terms on

1. individual terms, on single nodes,

2. common terms, on group of nodes, are common constraints still applied individu-
ally to each one,

64

3. aggregate terms, on group of nodes, are constraints with aggregate semantics which
are amenable of splitting (they can be transformed when split)

4. invariant terms, on group of nodes, where the aggregate semantics of the SLA
terms cannot change even if the group is split over provider.

For simplicity, in the following we discuss with examples related to a two-part SLA, but
the definitions are general.

The semantics of groups 1 and 2 poses the least problem in splitting SLAs, as the
constraints are places on application resources or directly inherited by them. In the SLA
split, these term simply follow the application splitting.

Most QoP guarantees belong to groups 1 and 3, they are not split into either parts of
the SLA but are instead replicated and included in all the resulting SLAs. Group 3 differ
from group 2 as the semantics of the term cannot be applied to a single resource. Indeed,
the general security rule states that the strength of a chain is the same of its weakest ring,
thus, splitting any security guarantee would render the whole system less secure.

Splitting price constraints will naturally happen when splitting resources or perfor-
mance, they belong in group 3. The Federation should balance things carefully as the unit
price of resources will typically vary among providers. If splitting happens during the ne-
gotiation phase between the user and the federation, the price asked to the final customer
can still be negotiated and will be determined on the basis of the total cost of the services /
resources agreed with each provider, also taking into account changes related to business
policies of the federation (e.g. the Federation may apply an intermediation margin or even
a discount). If splitting instead happens when the SLA with the final customer has already
been agreed, then there is one fewer degree of freedom, the final overall price becoming a
constraint for the SLA splitting and optimization problem.

Splitting penalties is even more difficult than splitting price, as the likelihood of los-
ing money increases for the Federation and must be compensated through suitable risk
reduction strategies.

Violations of split SLAs In general the violation probability for the final SLA is the
combination of the violation probabilities of all the SLAs resulting from a split. With
reference to the symbols defined in table 4, computing the failure probability is easy if we
think of isolated resources with fixed, possibly different failure probabilities,

Fa = 1−
∏
i

(1− F (Pi)) (1)

so when considering the split of the SLA we would simply need to minimize Fa.
However, if we take into account that groups of resources are under control of providers

which will enact their own SLA, and try to evaluate the expected outcome of this combi-
nation of SLAs, a more complex models arises, where the failure probability at provider
F (Pi) does no longer represent an isolated resource, but is the outcome of provider Pi

managing the D(Pi) resources it is providing, according to its own SLA management
policies. Note that the analysis is relevant both for

65

Fa overall probability of SLA failure
Pi, i ∈ {1 . . . n} set of providers

Ai agreed Service Level with provider i
(the higher the better)

Li provided Service Level from resources on provider Pi

V (Pi) = min(0, Li −Ai)/Ai percentage amount of violation at Pi

F (Pi) = {Li > Ai} =
= {V (Pi) > 0} probability of SLA failure at provider Pi

D(Pi) amount of resources deployed at Pi

Va overall amount of SLA violation
T tolerance, i.e. excess of QoS in the providers SLAs

Table 4: Basic parameters for QoS risk behaviour for a single attribute and a
multi-provider split.

• Cloudbursting happening from inside the federation to some public resources, as
the SLA on the public cloud provider is critical to ensure the federation can met
the one with the user,

• Cloudbursting toward the federation, where a federation user wants to recruit ser-
vices form the federation to complement those provided by its own private cloud,
and the federation needs to recruit those services and resources from more than one
provider.

Beside D(Pi), the value of F (Pi) depends on the reliability of provider Pi. So if
we can compute the expected overall magnitude of violation as in equation 2, where for
simplicity we can assume that the operation ⊕ combining the SLAs is a sum.

V = min

(
0,

(⊕
i

V (Pi)D(Pi)

)
− T

)
(2)

Here T is the tolerance that the federation imposes between the user-agreed SLA and the
composition of the SLAs agreed with the providers.

Clearly, optimal choice of the Pi and of D(Pi) is much less easier. An convenient
value of T must be chosen, which is a cost for the federation service but also increases
the likelihood of matching the agreed QoS in spite of provider issues.

Example The difficulty involved in splitting SLAs with penalties becomes apparent
with a simple example. Let say that for a given attribute α the user-agreed SLA imposes
a level of performance 100 but also includes a penalty for the federation in case of miss,
which is 100% of the application deploy fee.

The trivial choice of splitting this SLA in two, with two SLAs imposing on providers
P1 and P2 a performance of 50 with a penalty of 100% on their cost (that would mean

66

roughly 50% of the application cost) does not work. If one provider violates the local
SLA, the overall one is violated and there is not enough compensation (the Federation has
to pay full penalty while only collecting about half of it from providers).

As reported in equation 2, a choice that on average does not cause the federation to
loose money has to take into account the expected reliability of providers, the amount
of resources placed on each, and likely also has to include some degree of tolerance to
reduce the likelihood of an overall violation. Since this optimality problem may be hard
to solve in the general case, a basic risk reduction strategy is to minimize the number of
parts in which the SLA must be split, so that a full exploration of the solution set is not
combinatorially expensive.

Research Directions More advanced strategies for splitting SLAs depend on which
custom actions and rules a federation can apply in case of a violation (or near-violation
warning) in order to nevertheless enforce the overall SLA.

As anticipated at the beginning of this subsection (page 64) the actions depend on the
type of QoS terms (single, group, aggregate and invariant) and on the specific QoS term.

E.g “increase backup frequency” is a action concerning reliability, which can be the
result of an individual or common SLA term, is easy to tune and can be replicated and
included in all the SLAs resulting from a split.

QoS terms in the aggregate class, such as scaling rules, should not be replicated as
they are in the input. As it is clear from previous example, either (1) the triggering con-
dition is recomputed for each part taking into account risks and costs, or (2) the whole
rule is maintained at the Federation level, and the SLA with each provider is structurally
different, being used as a precondition that the federation support can exploit to ensure the
user SLA. As an example, a given level of performance and reliability can be obtained ei-
ther with a precise SLA on a single provider, or by over-provisioning from several cheaper
providers, if the overall likelihood and predicted cost of a failure can be made low enough
(this can also be seen as pushing some deployment choices to the execution time, when
the actual behaviour of the different providers is better known). The need to deal with
additional SLA parts than those agreed with providers leads to the Contrail taxonomy of
SLAs which is discussed in the following section 4.6.

4.6 SLA Coordination
This section surveys the range of techniques available for coordinating the split of an
SLA. We will also discuss some of the techniques that match the different cases of SLA
splitting.

We will rely on the concept of application component that it is defined as a part
of the application (VMs and all associated resources) hosted by a single Cloud provider.
Again, the term “component” is used in its more generic sense, not implying the existence
of SW components in the application.

As an application is decomposed together with its SLA, we need to keep under con-
trol its components and ensure that the overall deployment still satisfies the initial SLA.

67

We thus need to address the results of the SLA decomposition into partial SLAs. In the
following we define the main terms used in this section, introducing two distinguished
partial SLAs, the GlueSLA and the CooSLA, that address the need to define QoS aspects
whose fulfillment is on the infrastructure, or depends on the coordination of the recruited
resources and services.

Application SLA — The initial SLA agreed between the federation and the user. In
principle, whenever a single provider is able to fulfill it, no SLA splitting happens
and after provisioning the Federation behaves as an ordinary Cloud.

Component SLA (CompSLA) — When SLA splitting happens, each application com-
ponent needs to have a separate SLA in order to be provisioned. In the simplest
cases, a Component SLA is either an aspect of the Application SLA (e.g. the stor-
age guarantees which are enforced on a storage provider) or a trivial subdivision of
the original SLA. This subdivision can involve partitioning of some SLA aspects
and a large amount of replication (e.g. a set of identical, unrelated VMs are evenly
scattered among different sites, all ruled by similar SLAs).

Glue SLA (GlueSLA) — In the settings of Contrail federation, communication between
Cloud providers can be realized via different network resources. This can be a
serious issue when running an application as two or more separate components.
We call Glue SLA the part of the Application SLA which deals with guarantees
concerning inter-provider resources.

Main examples of inter provider resources are wide area network connections,
which are needed for instance to allow the computing nodes of provider A to access
the storage system of provider B. The Glue SLA will typically be generated from
a subset of the network constraints expressed by the Application SLA, i.e., those
related to the inter-provider communications. If a network provider C exists that
can enforce SLAs among the nodes of A and B, then the GlueSLA applies to C.
From this viewpoint, the GlueSLA is a special case of the CompSLA. The rationale
and the impact of GlueSLA on splitting and coordination is discussed later on.

Coordination SLA (CooSLA) — Even after splitting the Application SLAs (for instance
in order to recruit a very large amount of resources) we still want to deal with all
aspects of application elasticity. The Coordination SLA is the part of the SLA that
needs to be addressed directly by the Federation subsystems, covering those issue
that in inter-provider deployment are not handled by the providers. The CooSLA
will be used whenever compliance with the original SLA requires the federation
support to actively enforce actions on the providers (e.g. renegotiate elasticity with
provider A if provider B is about to fail the SLA).

• terms in the original SLA that are not amenable to splitting or to straightfor-
ward replication

68

• additional SLA terms which express how the coordination of different com-
ponents should happen and that need federation-level information to be en-
forced.

A notable case where CooSLA can be applied has been described in section 4.5.4,
being related to Cloudbursting and to the introduction of SLA tolerances for the
sake of reducing federation risks in managing split applications over multiple providers.

All the mentioned SLAs can be expressed with the SLA@SOI formalism exploiting the
appropriate set of SLA terms defined within the Contrail project.

Rationale of GlueSLA and Coordination SLA We explicitly distinguish the GlueSLA
(which a provider is in charge of) and CooSLA (managed directly by the federation) for
two reasons.

1. While Contrail relies on the VIN component in order to provide QoS over inter-
provider connections, depending on the actual network not all SLA terms can be
supported with the same degree of reliability. E.g., network security can be en-
forced via standard techniques, while network performance is hard to enforce and
sometimes even to predict when link bandwidth reservation is not available. SLA
terms that cannot be negotiated within the GlueSLA need to be distinguished and
placed in the CooSLA, so that the federation SLA management can monitor or
enforce them.

2. The federation organization and SW architecture must work even in the case the
federation does not have any available entity at all supporting a specific GlueSLA.
Assuming that we need to split an application SLA over two service providers A
and B, but no network provider C exists that can enforce QoS on the intercon-
necting links, it follows that the GlueSLA expressing that QoS must rely only on
best-effort. Similarly, some feature may not be enforceable even by the federation.
We are thus reversing the process, i.e. by placing constraint on the GlueSLA and
CooSLA which result from the splitting, we forbid any split which would not be
correctly managed at the federation level.

On top of this distinction, several strategies can be devised, which relate to differ-
ent techniques to generate different contents of partial SLAs at SLA splitting time. The
strategies are described in the following sections, and summarized in table 5.

4.6.1 Baseline coordination

Whatever kind of SLA and application splitting is defined, the trivial case of SLA coordi-
nation is no coordination at all.

Still, void coordination implies that SLA violations are detected, even if no reaction
is planned. Any partial SLA can potentially fail, and in Baseline coordination this raises
an exception for the violation of the overall SLA. Before the exception is propagated, the

69

Table 5: SLA decomposition and sub cases of SLA coordination. We report with
respect to the content of the different partial SLAs what are the compatible co-
ordination mechanisms, as well as the kind of splitting methods that generate the
combination of partial SLAs.

CompSLA GlueSLA CooSLA SLA coordination SLA split methods

YES empty empty none no split
YES YES empty none, baseline service-, availability-based
YES empty YES migration, balancing availability-, performance-based
YES YES YES migration, balancing availability-, performance-based

federation support verifies that the overall SLA is actually violated (if redundant resources
are in use, a single violation may be small enough to be undetected by the overall SLA).

The main aim of Baseline coordination is to provide definite information on the in-
tegrity state of the application (i.e., the SLA compliance state of the application is always
known).

Baseline coordination algorithm When applying Baseline coordination, the Comp-
SLA and GlueSLA can be generated with anyone of the mechanisms described in section
4.5. The CooSLA will always be empty.

As no repair action can be undertaken, the algorithm is a trivial event loop where
each CompSLA violation triggers collecting the CompSLA penalty from the defaulting
provider, and causes an evaluation of the Application SLA. If that is violated too, the event
is logged and notified to the user. The federation is then liable to pay any penalty that was
specified in the Application SLA10.

It is optional to inform the user about local violations which did not cause an over-
all violation. This last functionality is useful to allow PaaS services (ConPaaS ones in
particular) to more efficiently react to IaaS-related events.

4.6.2 Migration-based coordination

Migration-based coordination addresses SLA violations by moving whole Application
components from one provider to a different one.

Each component in the application is to be migrated when SLA violation is detected.
Potential migration cost has to be taken into account in the overall SLA. That is, in order
to accommodate for the reaction delay on part of the federation, suitable tolerances shall
be in place between the Application SLA and the different CompSLAs (including the
GlueSLA if present), which are encoded in the CooSLA. This imposes a more restrictive

10Note that a violation in the GlueSLA is very likely to trigger an overall violation, while func-
tional replication over different providers, e.g. in parameter sweep applications, can likely over-
come small violations at a single computation or storage provider.

70

splitting and mapping procedure, where tolerances are explicitly introduced according to
the federation estimated risks and costs.

At a CompSLA violation, the federation needs to find another provider to agree and
sign the component’s CompSLA. Specific migration HW constraints will have to be sat-
isfied (the most basic one that the same hypervisor is used on the providers, if live migra-
tions is employed).

If the GlueSLA is violated and other connectivity services are available11, then the
GlueSLA should be migrated (or simply renegotiated, as a special case, i.e. paying the
price of moving from a best effort service to a guaranteed bandwidth mode).

Migration-based coordination suits a simple scheme where components of the appli-
cation are defined in a homogeneous way (e.g. a same OVF) and the cost of moving
them is relatively small with respect to the Application SLA. For instance, long-running
large computational efforts, such as parameter sweep studies or farm rendering of photo-
realistic video, will likely be subject to migration operations which drive whole appli-
cation components where higher performance or lower costs are currently available. In
these cases, the cost of migration can become secondary and be practically bounded.

Migration-based algorithm The pseudo code of the migration-based coordination
algorithm in figure 14 formalizes the behaviour of the federation runtime in the different
cases of violation of the partial SLAs. A few notes to the pseudo code.

• The algorithm is an event loop, where one or more SLA violations may be received.

• We deal with the GlueSLA first, as its violation will typically cause several com-
ponents to default their CompSLA.

• Any failure is dealt with by remapping the whole component, then the GlueSLA is
updated.

• a failure to identify a corrective migration or renegotiate a critical SLA leads to
escalating the SLA failure.

• The behaviour of signal_violation() depends on the user SLA. Upon a
non-recoverable SLA failure different applications will choose e.g. to continue
executing (and benefit from the SLA violation penalty) or simply terminate (time-
critical services). The flag application.continued() may be accordingly
set in order to attempt a migration-based re-balancing after such an event.

• the updateReputation() function, besides influencing long-term reliability
estimates of providers, can include various permanent/temporary blacklisting tech-
niques (e.g. like in tabu search) to avoid that, several application components fail-
ing, the components are simply shuffled among providers with no actual gain.

11If no other connectivity provider or service is available, a migration of the other resources may
theoretically enable a renegotiation of the GlueSLA, but we chose not to deal with this borderline
case.

71

procedure migrationCoordination (RunApplication application, ProviderSet providers)
begin
do loop
event=waitNextSLAEvent(application);
application.status.update(event);
violation=filterViolations(event);
if(violation.detected())
begin
overall_violation=application.SLA.evaluate();
// already too late, Overall SLA violated
if (overall_violation && not application.continued()) then
application.user.signal_violation();
return();

else
begin //GlueSLA only violation
glue_violation=application.GlueSLA.evaluate();
if (glue_violation)
begin
newGlueSLA=mappingModule.updateGlue(application, glue_violation);
solution=negotiationModule.renegotiateGlue(newGlueSLA);
if (not solution)
begin

application.user.signal_violation();
return();

end
end
//manage components SLAs
//step 1, update reputations and manage blacklists
foreach group in application.componentSet;
begin
group_violation=group.CompSLA.evaluate();
if (group_violation) then

providers[group.assignedProvider].updateReputation(group_violation);
end
//step 2, try to reallocate components
migrationPlanned=False;
foreach group in application.componentSet;
begin
group_violation=group.CompSLA.evaluate();
if (group_violation)
begin //reallocate a component

migrationPlanned=migrationPlanned ||
mappingModule.remapComponent(application, group.CompSLA);

end
end
if (migrationPlanned) //update the GlueSLA
begin
newGlueSLA=mappingModule.updateGlue(application, NULL_VIOLATION);
solution=negotiationModule.renegotiateGlue(newGlueSLA);
if (not solution)
begin //we can’t remap the components and keep the overall SLA

application.user.signal_violation();
return();

end
else //complete all pending negotiation of GlueSLA and CompSLA

negotiationModule.updatenegotiations(application);
end

end
end

while not (application.status.terminated())
end

Figure 14: Pseudocode of migration-based coordination.

72

• The functionality mappingModule.remapComponent() of the federation
mapping component is to devise a provider to map the group passed as second
argument. The output is constrained to be different from the current mapping (dif-
ferent provider or different SLA terms) and will take into account latest provider
reputation updates. It returns true if a new mapping is actually found.

4.6.3 Rebalancing coordination

The most complex approach to the coordination of different SLAs is to exploit the elastic
capacity of some provider, supporting components from the application, to match the
violation of other providers.

This approach allows application component splitting at execution time. That is, if an
application component cannot grow on a given provider, the federation will launch a split
operation as well as a mapping one in order to allocate part of the component on another
provider.

In this more complex scenario we aim at taking into account not only constraints
related to the user SLA, but also constraints of efficient use of providers (freeing them as
they are underutilized).

This solution is suited to the cases of performance based splitting (where we not
only address the user SLA but also other optimality criteria), of tolerance added by the
federation on top of the partial SLAs (as we do not want the tolerance cost to run too
high), and of enacting run-time renegotiation with providers.

We do not provide yet an algorithm for this case of multiple SLA coordination, as it
is beyond the state of the art and several research issues have still to be settled.

Approaches that are considered in the literature, although they usually target manage-
ment of resources within a Cloud provider and not inter-provider management, include in
particular rule systems and the definition of different levels of compliance (e.g. high/low
thresholds in the SLA term satisfaction triggering adaptation rules).

When applying rules, they may take into account both the amount of the SLA vi-
olations, and the output of optimization procedures used in the mapping phase (for the
evaluation of past solution, and memoized, or related to the evaluation of potential new
mappings).

4.7 Mapping
In its general formulation the mapping activity consists in finding a set of resources able
to execute a given application, typically represented by a graph. As discussed in section
4.1, a Contrail federation employs an Abstract TIG where related virtual machines can be
coalesced into homogeneous groups.

We focus here on the mapping activity performed by the federation support. The
Mapping module within the Federation Runtime Manager component has to find a suitable
provider (or set of providers, if group splitting is enacted) for each group of appliances in
the application (the basic case being when all appliances end up on the same provider).

73

To this end the Mapping module considers different sources of information.
• Application execution constraints extracted from the OVFs, the user preferences,

and the SLA proposals specified by users. This set of information is used to build
a comprehensive set of constraints that have to be satisfied by a proper (set of)
provider in order to successfully execute the application.

• A coherent view about providers and their actual resource availability is achieved
via a provider monitoring interface. Information is kept by the federation in an
aggregated form. Although the information is approximate an possibly incomplete,
by early discarding unsuccesful candidates we increase the success rate of provider
negotiations, and thus the scalability of the mapping process.

Information about Resource Availability We do not assume that all providers
would be willing to provide detailed information about their available resources. We can
assume that providers willing to federate within Contrail will accept some compromise
between disclosing their data and being exploited by Contrail users (the more information
is exposed, the more the provider is trusted by the federation and receives work).

When no insight is available about the provider (e.g. for public clouds) this must
reflect in the reputation of that provider. The mapping procedure will have to take care in
advance of the increased risk of violations, e.g. by adding extra tolerance margins to the
CompSLA or by reducing the rank of that provider with respect to others.

Optimization Criteria For the federation-level mapping phase, we consider algo-
rithms able to map the application graph on resources represented in an aggregated form.
When there are many providers able to execute an application, the problem is to find the
“best” one. The actual definition of best fit is not trivial. The providers will usually define
their best choice as the mapping which satisfies their agreed SLA with minimal over-
provisioning and resource cost. The user is normally allowed to state an SLA but not a
preference criterion, i.e. a function to optimize.

In this scenario the federation has a peculiar role as intermediator. By comparing the
offers of several providers, the federation can actually devise several solutions satisfying
the user SLA proposal, and can afford to optimize by choosing with a specified criterion.
The utility function of the federation will be a combination of
• the gain obtained by overpricing provider resources,
• the satisfaction of the providers (e.g. the amount of resources they are able to sell

thanks to the federation),
• the satisfaction of the user (in term of improved achieved QoS from the federation,

with respect to single providers).
These three components can be expressed as linear functions, as well as the constraints

are, giving rise to mixed integer linear programming subproblems.
However, at least three classes of mapping problem are normally generated
• mapping/remapping of an application component
• mapping all the components of an application

74

• find the optimal split of an application component over two (a fixed number of)
providers.

When the issues shown below are added to the scenario, it cannot be always granted
that the overall problem is still solvable with linear programming tools (several discrete
variables and weights are added, making the actual solution space complex to explore).

To solve this kind of problems usually a two layer, meta-heuristics approach is used.
The “simpler” subproblems are solved directly (e.g. subproblems of the mapping which
reduce to linear programming). These solvers are used as a subroutines by a higher-level
search strategy that is put in charge of the remaining parameters in order to explore the
whole solution space.

This kind of (possibly combinatorial) search generally exploits a set of heuristics. The
existing heuristics-based tools allow to linearly combine multiple score functions with
assigned weights, as well as to choose different heuristics. Some promising metaheuristics
approaches have been listed in section 4.5.1.

This approach allows to configure the mapping process. For some of these algorithms
we could allow the user itself to customize the weights of the metrics and heuristics. If
the different heuristics provided by the federation have a definite bias for, say, higher
performance, reduced cost or higher reliability, allowing the user to tune their balance is
an opportunity to support extended SLAs of the form “find the resources which provide
the quickest answer within a given cost constraint”.

4.8 Provisioning
The goal of the provisioning algorithm is to initialize application resources (i.e. network,
storage, computing and other services) in a correct order, when deploying a single ap-
plication on multiple providers. Order is essential, as most of the provisioned parts of
a multi-provider application rely on information produced and/or resources provided by
different providers.

The interaction diagram of the provisioning algorithm of the federation is shown in
Figure 15, while the pseudo code is reported in Figure 16. The algorithm is intended
for Contrail cloud providers, where we assume the existence of local VIN and GAFS
components controlled by the provider, and global access points to the VIN and GAFS
functionality. The extended algorithm that enables provisioning also for external clouds
is currently under study.

The procedure takes in input (i) a description of the application, which is composed by
a list of appliances and their URI, and (ii) the mapping between appliances and providers
(it is managed via selectAppliancesForProvider in the pseudocode).

The first step is to inform providers about the appliances to deploy as well as the
related, agreed SLA, and collect their actual decisions (e.g. IP addresses of VMs and/or
provider access points).

The sendAppliances procedure (i) forwards to the provider information on the appli-
ances to start, causing their actual provisioning, (ii) requests the virtual machines to be
deployed in a frozen state (execution does not begin) so that non-local resources are nor

75

accessed yet, and (iii) collects information (DeploymentInfo), which includes the (possi-
bly virtual) IP addresses of the appliances deployed.

In the second step, the collected information is used to drive the contextualization
of storage volumes and virtual networks. This second step ensures that all the virtual
machines share the same subset of storage volumes and private networks access, by for-
warding the VIN and GAFS global access points information about all provisioned VMs.
Here we make the Contrail-specific assumption that providers know how to contact the
VIN and GAFS access points.

Finally, the appliances are unfrozen on the providers. The FRM keeps the control on
appliances through a VMset handle (one per provider). The FRM also manages applica-
tion termination. After the termination/freeze of all the appliances each provider returns
a summary of the execution, then the FRM handles the de-contextualization of the inter-
provider infrastructural resources VIN and GAFS.

76

Federation
Runtime Manager Provider1 ProviderN...

Appliances submission
 to Cloud 1

Appliances submission
 to Cloud N

...

VIN

Deployment Information

Deployment Information

GAFS

Network Contextualization

Storage Contextualization

Network Map

Storage Map

Start Appliances
 on Cloud 1

Start Appliances
 on Cloud N

...

Appliance Handles

Appliance Handles

Stop Appliances
 on Cloud 1

Stop Appliances
 on Cloud N

...

Execution Summary

Execution Summary

Network DeContextualization

Storage DeContextualization

ACK

ACK

A
pp

lia
nc

es
 T

ra
ns

fe
r

an
d

C
on

te
xt

ua
liz

at
io

n
A
pp

lia
nc

es
 E

xe
cu

ti
on

 M
an

ag
em

en
t

A
pp

lia
nc

es

D
e-

co
nt

ex
tu

al
iz

at
io

n

Images deployment

Images deployment

Figure 15: Interaction diagram for multi-provider application provisioning.

77

procedure provisioning (Application application, Mapping map)
begin

foreach Provider pr in map do
begin

// appliances are extracted (and flattened) for provider
setOfAppliances apps =

selectAppliancesForProvider(pr, application);
foreach appliance a in apps do

apps.addImageURI(a, retrieveImageForAppliance(a));
end
DeploymentInfo.enqueueInfo(sendAppliances(pr, apps, SLAs));

end

NetworkMap = contextualizeNetworks(DeploymentInfo);
StorageMap = contextualizeStorage(DeploymentInfo);

foreach Provider pr in map do
begin

apps = selectAppliancesForProvider(pr, application);
AppHandles.addHandle(start(pr, apps));

end
// save DeploymentInfo and AppHandles for later use

end

// at application termination time
procedure deprovisioning (Application application,

handleSet AppHandles, DInfo DeploymentInfo)
begin

foreach handle in AppHandles do
begin

ExecutionSummary.enqueueSummary(stop(handle));
end

decontextualizeNetworks(DeploymentInfo);
decontextualizeStorage(DeploymentInfo);

end

Figure 16: Algorithm for multi-provider application provisioning.

78

5 Federation Interfaces
The federation is both an access point to the cloud resources as well as a way for the user
to abstract from the actual details of which provider is actually serving the resources. The
interface for the federation must therefore support the following categories of tasks:

• Cloud Federation management. This includes the management of the properties of
the federation, the profiles of the cloud providers, and the cloud users.

• Cloud resource usage. The federation serves as a front end from the providers
(Contrail VEP or non-Contrail public cloud) towards the cloud users.

5.1 Web Interface
Attracting less technically apt users to a product or a platform depends on the comprehen-
siveness as well as a good design of a graphical user interface (GUI). In certain cases, a
good backing in a user interface can also improve the experience when having to perform
maintenance tasks on a complex system.

The Contrail federation represents a system that we expect to be largely used in an
automated fashion, either through scripts using the command-line interface, or directly us-
ing its API. Nevertheless we want to expose all the functionality of the federation through
a user-friendly interface. Naturally, we find the web interface to be the most suitable way
of making a client-platform-independent and ubiquitous GUI. Therefore, it should be the
hub of the functionality that includes:

• setting up and maintaining the basic parameters of the federation operation;

• management of the properties of the cloud providers that are part of the federation;

• user management;

• appliance and application management.

The federation web interface is designed in a streamlined fashion, providing the user
a top-level navigation with the web pages organised into categories. Each category repre-
sents a set of related tasks. The categories’ availability for the logged in user are subject
to the user’s access rights. In other words, a user only sees and has access to the pages
with those tasks that the user is entitled to use. In the following sections we describe the
categories and the activities that the user can perform in each category.

To make a start with the activities, the user visits the federation provider’s web page.
She is presented with a log in page, that may be similar to the one in Figure 17. If
the user does not have a valid account for the federation, there may be an option for
registering as a new user. For the users with a valid account, however, the starting page
will provide various schemes of authentication, such as basic username and password,
OpenID, Shibboleth and similar.

The users that have more than one role at the federation will be able to select from
their valid roles in order to act in the web interface with the capabilities and access rights
assigned to that role alone.

79

Figure 17: The log in page.

5.1.1 Federation Administration

This category contains the pages with the tasks that enable the management of the feder-
ation. We expect that this functionality will only be available to few selected users with
credentials of a federation coordinator role. Such a user can perform the following tasks:

• User management. The coordinator can create new accounts for the users, block
or remove existing users, and approve (or deny) access to the newly registered
users.

• Cloud provider management. Here, the coordinator can manage properties re-
lated to the protocols between the cloud providers and the federation service, edit
any operation policies, etc. As its most basic task, the federation coordinator has
to represent the Federation when establishing the mutual trust agreement between
the Federation itself and any newly joining Provider.

Figures 18 and 19 show an activity where the federation coordinator can view the
up-to-date list of the federation providers and an example of the form for adding a new
provider respectively.

The federation coordinators can also access reports on the usage of the resources in
the federation:

• Periodic (e.g., monthly) reports summarising the resources consumed by the users,
aggregated by the cloud providers;

• Periodic reports on the overall activities per each provider.

80

Figure 18: List of providers in the federation.

Figure 19: Adding a new provider to the federation.

5.1.2 Provider Administration

This category is designed for the administrators of the individual cloud providers that
want to be or are an active part of the cloud federation. Each cloud provider administrator
can only access the functionality and properties of their own cloud as it is represented in
the federation. The tasks include the following:

81

Figure 20: Listing the SLA templates of the current cloud provider.

• Management of the SLA templates. Here, the provider administrator can add or
change the SLA templates that tell the federation and its users the terms that can
be negotiated with this provider.

• Management of the networks. The federation will query for the list and details of
the networks automatically, but the provider administrator may override the values
if needed.

• Storage management. This includes uploading and registering any disk images
that can be a part of the appliances ready for the users of this provider.

• Appliance management. This includes registering appliances that the provider is
willing to offer to the users of this federation.

The provider administrator can also get reports on the resource usage from the feder-
ation users and monitor the activities as seen from the federation.

Figure 20 shows an example of the page where the logged in provider administrator
can view the list of the SLA templates that the provider supports.

5.1.3 Cloud Federation

The Cloud Federation category is accessible to the users of the cloud providers’ resources.
This covers the following tasks:

• Service-level Agreements management, including initiating a (re)negotiation from
the available SLA templates.

82

Figure 21: An example form for initiating a SLA negotiation by selecting a SLA
template.

• Appliance management, including the possibility for deploying the pre-provided
appliance or uploading user’s own ones.

• Application management, including monitoring the current application’s activi-
ties, manipulating VMs, managing notifications, etc.

• Profile management, where the user can view or change any details of the user
account, upload or request credentials, etc.

The starting point for the users is the negotiation of the SLA that will apply for all the
user’s applications. It takes shape of a wizard where the user first selects from a list of
available SLA templates, as shown in Figure 21. Upon selection of a suitable one, the user
can change specific values of the template and submit the document into the negotiation.
The web interface shows an up-to-date status of the negotiation (Figure 22), which can
have one of the following statuses:

• pending: the federation is waiting for the providers to give a response to the current
user’s SLA template.

• offer: the federation has a template that is acceptable for the providers. The user
can either accept, reject, or provide a counter-offer.

• rejected: the federation cannot guarantee the terms based on the provided SLA
template.

83

Figure 22: The status of the past and undergoing negotiations.

The user can inspect the current state of a negotiation by selecting it in the user inter-
face, like, for example, in Figure 23. If the negotiation is in the state offer, the user has
an option to change the offered parameters in the SLA template, sending it into another
round of negotiation. Alternately, the user can also decide to stop the negotiation, by
either canceling it altogether or accepting the current terms.

The web application provides the facilities for getting the reports on the past user’s
activity, such as the amount of resources consumed as well as up-to-date graphs showing
a more detailed diagnostics of the application’s performance. The user can also find in
the same area the possibility for setting up instant notifications of important events that
the application publishes. These notifications can appear in the web interface’s windows
as pop-ups, or the user can decide to have them sent to her e-mail address.

We note that the cloud federation aspects of the web interface are the ones that the
majority of users will access. Therefore, we want to make the user experience for most of
them as good as possible. To this end, we give the users an option to access a simplified
version of the Cloud Federation web interface category, where the more advanced and
complex functionalities are hidden. The ones available are the follows:

• Applications. The user can view the current status of the virtual machines in the
application, add, or remove running virtual machines. The workflow assumes that
a user is assigned a pre-negotiated SLA.

• Profile. The user can view and change her own profile’s properties here.

84

Figure 23: The details of a SLA template under negotiation.

5.2 REST Interface
The federation is a service or a set of services, whose functionality needs to be exposed
not only towards users, but also towards other software. This includes services running
as a part of the Contrail stack, but our vision is also wider, covering custom applications,
because including the federation in the automation schemes is very important. We feel
that openness and ease adoption of the API help in a faster integration of the federation
services into the Contrail, and it also grants faster inclusion into frameworks created by
the community.

We feel that by using the Representational State Transfer (REST) [21] paradigm we
can achieve our goals. The REST style uses the basic HTTP verbs for creating (POST),
reading (HEAD, GET), updating (POST, PUT) and deleting (DELETE) resources. The
state of the resources describes the state of the federation and its underlying entities.

We designed the Federation API such that it reflects the design of the Contrail VEP
API as described in [15]. While the two APIs are not required to be identical, in a practical
sense, the federation deals with similar concepts as VEP, even if they appear on a higher
level.

5.2.1 Addressing the entities

The Contrail API bases their instances and properties on a set of fully addressable re-
sources. Each entity has a unique URI which takes the standard HTTP URL form:

http://federation1.contrail.eu/api/resource/id

85

which consists of the following elements:

• http:// is the protocol used for invoking the API. The server may also provide
https:// for a higher security.

• federation1.contrail.eu is a fully qualified host name of the service’s (or
the API front-end’s) host.

• /api/ is the name of the API to receive the requests.

• resource/ is the name of the resource to receive the request.

• id is the name or the unique identifier referencing an instance of the resource.

The URI can express a hierarchy of resources, signifying ownership or customiza-
tions. For instance, the following URI represents all the SLAs owned by user mary:

http://federation1.contrail.eu/api/user/mary/sla/

5.2.2 HTTP Verbs

In order to obtain or change the state of the resources, effectively by using the federation,
we employ a subset of the HTTP verbs invoked on the URLs. Table 6 summarises the
effects on different types of entities referenced by an URI.

Type GET POST POST PUT PUT DELETE
(create) (action) (create) (update)

Resource
(path ends
with /)

List of re-
source in-
stances

Create
a new
instance

- - Delete
all the
instances
of resource

Resource
instance

Rendering
of the in-
stance
(e.g., at-
tributes)

Create
a new
instance

Create a new
instance at
given path
(where
applicable)

Update the
resource
instance

Delete the
resource
instance

Table 6: The effect of the HTTP verbs.

The Contrail API also responds to the HEAD and OPTIONS verbs. The HEAD verb
on a resource instance retrieves the resource’s metadata. The OPTIONS verb retrieves the
supported verbs on the specified URI.

5.2.3 Contrail API resources

The essential part of each RESTful API is a set of resources that are uniquely addressable.
The construction of the set depends on the overall state that represents the federation as
well as the processes involved. The resource list does not necessarily fully reflect the
model or the implementation of the federation. For example, a negotiation is a process,

86

which involves records containing SLAs. But to properly express the process in REST,
we introduce a resource for negotiation, even though a resource for SLA exists.

Here is the full list of the resources for the Contrail federation:

• user
• provider
• SLA template
• SLA
• negotiation
• image
• ovf
• deployment document
• appliance
• application
• usage policy
• notification
• report
• cloud provider membership
• network
• storage
• virtual machine

On top of the resources, we provide the following links:

• appliance provider: links appliances to the cloud providers where the appliance is
supported

• cloud provider membership: links a user to a cloud provider

• appliance network: links an appliance to a specific network

• appliance storage: links an appliance to a specific storage

• storage image: links an image to a storage

• image provider: links an image to a provider where the image is hosted

• ovf deployment document: links a deployment document with an OVF document

• sla deployment document: links a deployment document with an SLA document

The list is flat, even though some of the resources appear as subordinates to another re-
source. The client implementation should therefore not construct the URIs, but rather
follow the hyperlinks obtained in the responses.

Please find a more detailed reference of the Contrail API resources in the Appendix A.

5.2.4 HTTP rendering

In the Contrail federation REST API, we define the following format of the HTTP render-
ing. When the client obtains a result from a request or a query, the body of the response

87

contains the links to the resources that are relevant for any further navigation. The render-
ing depends on the media type requested by the client.

For example, the following transcript is a result of querying for a user using the
text/json media type:

> GET /api/user/user-001
> Accept: text/json
> [...]

< HTTP/1.1 200 OK
< Content-Type: application/json; charset=utf-8
< [...]
<
< {
< "username": "user-001",
< "email": "my-email@contrail.org",
< "group": "federation-admin",
< "status": "active",
< "user-slas": [
< {"name": "sla001", "link": "/api/sla/sla001/"},
< {"name": "sla012", "link": "/api/sla/sla012/"}
<],
< "resource-usage": "/api/user-001/resource-usage/"
< }

Similarly, the same information can be requested using text/xml:

> GET /api/user/user-001
> Accept: text/xml
> [...]

< HTTP/1.1 200 OK
< Content-Type: application/xml; charset=utf-8
< [...]
<
< <?xml version=’1.0’ encoding=’utf-8’?>
< <user>
< <username>user-001</username>
< <email>my-email@contrail.org</email>
< <group>federation-admin</group>
< <status>active</status>
< <user-slas>
< <sla name="sla001" href="/api/sla/sla001/"/>
< <sla name="sla012" href="/api/sla/sla012/"/>

88

< </user-slas>
< <resource-usage href="/api/user-001/resource-usage/"/>
< </user>

The following example shows the exchange when adding a new user. If successful, the
result (HTTP/1.0 201 CREATED) shows the location of the newly created resource in-
stance.

> POST /api/user/
> Content-Type: application/json; charset=utf-8
> [...]
> {
> "username": "user-020",
> "email": "user020@contrail.org",
> "group": "cloud-user",
> "status": "active"
> }

< HTTP/1.0 201 CREATED
< [...]
< Location: http://localhost:4567/api/user/user-020

5.2.5 Relation of the Contrail Federation API with the OCCI

The OCCI Infrastructure document [10] specifies the classes involved in the cloud com-
puting infrastructure. The HTTP RESTful rendering [11] defines the standard format to
be implemented by an infrastructure front-end.

The Contrail Federation acts on the behalf of the cloud provider’s infrastructure, there-
fore, it is suitable for exposing the OCCI API. The Contrail Federation API in the first
release does not yet comply with the OCCI, as in the first prototype we seek to define
both the common denominator with the OCCI as well as the extensions necessary for the
Contrail Federation client to be able to perform all tasks. Considering that our goal is to
provide a standard interface, we also designed the Contrail Federation API in such a way
that it will be upgradeable into the full standard specification with as few changes to the
API as possible.

To approach the OCCI-compliant rendering, we provide the text/contrail and
application/contrail media and content types. The resource attributes and their
values need to be sent from the requester to the service in the headers of the requests. We
use the X-Contrail-Location headers to express locations, and
X-Contrail-Attribute when passing attributes and their values. As for attributes,
the header should contain a contrail.resource.attribute=value string, where
resource is the resource which the attribute belongs to, attribute is the attribute
name, and value is the value to be set, changed or, in the response, is currently set to the
resource’s attribute.

89

5.2.6 Obtaining the resource usage

A role of the API is also the ability of the users to obtain the resource usage of the relevant
cloud resources. The resource usage is subject to access control in terms of both the
access to the HTTP resource and the content retrieved. Table 7 shows the resources with
the available resource usage functionality and the related restrictions.

Resource Usage records retrieved Restrictions
user the cloud resources consumed by

the user
a cloud user is permitted
to obtain own usage; the
cloud provider user obtains
usage filtered by provider’s
resources; the federation user
obtains an aggregation

provider usage of the cloud provider re-
sources

available to provider’s users
only

application usage of the virtual machines asso-
ciated to the application

available only to appliance’s
owner

Table 7: The resource usage records retrieved from various resources, depending
on the type of user doing the queries.

In order for the client to obtain the resource usage, it needs to GET an URL con-
structed as follows:

http://federation1.contrail.eu
/api/resource-usage/?from=start_time&to=end_time

The start_time and end_time are the timestamps that limit the time range of
the resource usage queried.

The client does not have to construct these URLs, rather it obtains them as a response
when querying the resource with GET.

5.2.7 Authentication and Authorisation using REST

In using REST, we use a popular and community-endorsed technology, which uses stan-
dard HTTP verbs to manipulate resources. The Resource-Oriented architecture also advo-
cates statelessness of the services: each request from the client should generally encom-
pass all the needed information for the server to be able to perform the required operation,
without having to have some sort of a trace of the client’s previous activity. This includes
authentication, i.e., “logging the client in”, to establish their identity and access rights as
an initial step of some sequence of requests.

In Contrail, we require in addition, single sign-on capability since we are providing a
federated infrastructure to manage multiple accounts over a range of cloud providers. We

90

also require support for access via console applications and scripts as well as browsers.
This is an important consideration since many of the technologies available in this space
are browser-centric in their focus.

Despite the popularity of REST interfaces, there seems to be no commonly-agreed
upon standard for the authentication, the authorisation, and the transmission of any asso-
ciated user attribute information required. In this section we consider options, building on
the initial discussion in sections 4.1 and 4.2 of Contrail Deliverable D7.1 [18].

HTTP Basic Auth and HTTP Digest based authentication provide the most obvious
means and if deployed with transport layer security would be secure as well. We can
find an example of a proprietary authentication mechanism in Amazon S3, e.g. the use
of a shared secret between Amazon and the user to sign specific header values of HTTP
messages exchanged. Interestingly, however, some authors [21] suggest that giving to S3
the header encrypted with one’s secret is a valid way of sharing a resource within S3.
This is clearly an unsatisfactory way to secure assets of any value. We note the work
from the HTTPsec [3] project, which provides a more sophisticated means for mutual
authentication between client and server by using RSA public keys. Artifacts are passed
in the HTTP header. However, this protocol appears to have had little take up.

Turning to single sign on technologies, OpenID provides a means of single sign on and
has RESTful characteristics in that a URI is used to represent a resource: a token repre-
senting a user’s identity and their home organisation or Identity Provider. A number of se-
curity concerns such as for example vulnerability to phishing make this technology suited
for the protection of resources requiring only a low level of assurance. However, these
can be mitigated to large extent by stipulating transport level security for both OpenID
Provider and Relying Party endpoints. OpenID is targeted at web browsers although a
profile could be established to enable use with console applications. However, this would
exclude commercial providers such as Google and Yahoo. The SAML 2.0 specification
has included the ECP (Enhanced Client or Proxy) Profile targeted at non-browser clients.
SAML has widespread take up in the academic sector with Shibboleth.

In the Grid computing community, personal user X.509 certificates are well estab-
lished and used for authentication / single sign-on. RFC3280 proxy certificates enable
the creation of short-lived credentials and delegation to other entities to act on a users be-
half to access resources. However, specialist SSL middleware is required for consumers
to correctly verify them. The MyProxy Online CA enables short-lived credentials to be
generated from username/password without the need to resort to proxy certificates. Such
short-lived credentials can be used with HTTPS in the SSL-handshake to enable a server
to authenticate a client.

OAuth [13] addresses a different use case, enabling the delegation of authorisation
rights to another entity. It can be used together with single sign-on technologies like
OpenID to facilitate access to secured resources in a federated environment. We note that
some authors advise against using it for a non-browser based API [20].

Along with authentication credentials, a client may push attributes to enable the con-
sumer to authorise the user to access resources. Alternatively, a consumer may pull at-
tribute information out of band of the authentication channel by querying an independent

91

attribute service. Pushing attributes has some advantages in that enables the client to de-
termine the exact attributes released to the consumer. However, the limitations of HTTP
browser clients, such as the restrictions in header size and URL length, mean that it can be
difficult to pass the necessary information. SAML provides the artifact binding to enable
attributes to be retrieved on a back channel independently of the main communication
channel. The WS-Federation Passive Requestor Profile recommends the use of requester-
side scripting to enable larger content to be returned using the POST method. OpenID
Attribute Exchange uses URL query arguments but will resort to the same method if con-
tent exceeds the recommended URL length.

With short-lived credentials, it is possible to add attribute information to the certifi-
cates extension section provided in the X.509 certificate format. This could for example
be in the form of a SAML attribute assertion. Considering the need for a simple proto-
col for command line clients we have selected this means for Contrail. Readily available
HTTP clients such as wget and curl support SSL client authentication. This method re-
quires HTTPS but this may not be desirable in all cases. To allow for this, the initial
channel of communication may be HTTP. The server can respond with a redirect request
to a HTTPS endpoint. This endpoint can apply the client authentication and, on success,
redirect back to the original HTTP-based URL requested setting a cookie to register the
authenticated state.

This solution ultimately means that the user (the command-line user, since the web
interface has a back-end with more powerful credentials) will need to deal with private
keys and certificates one way or another. Therefore, we need to create some tools, that are
not very different from the CDA in XtreemOS or CILogon project developed for Teragrid
in the US: a command-line client that creates a private key and sends a certificate request
to the credential service, passing along a shared secret (username and password). This
could provide for the user’s environment the needed certificate and key proving the user’s
identity. Then the user could “log in” into the federation with another tool, which would
use the identity certificate, and obtain some short-lived credentials, which could then be
passed with the Contrail federation commands. Using the bash environment variables (or
even some keyring) could help here.

5.3 Command-line Interface
Contrail provides the full functionality of the federation also via command-line tools. The
command-line interface enables powerful and quick manipulation of the federation’s state
either directly or through scripts. The commands provided accept parameters according
to standard conventions (e.g. returning results in the standard output in a form suitable to
further script processing).

The available commands cover the same set of actions that the REST interface does
(in fact, they are designed as tools to access the REST interface from a standard command
shell). The command line tools can be grouped in categories, based on the aspect of the
federation that they manipulate.

• Federation users commands — list and manage the information about the users

92

and their profiles at the federation. Therefore these commands represent the inter-
face with the identity management for the users.

• Cloud provider commands — manage the view that the federation has over the
cloud providers. These commands can be used by the provider administrators in or-
der to register the cloud access points and the related parameters that the federation
needs to observe when interacting with the provider. The federation coordinators
can use these commands to regulate usage policies and, overall, the cloud provider
status in the federation.

• SLA template commands — inspect and manage SLA templates.

• SLA commands — inspect and manage the agreed SLAs in the federation SLA
registry.

• Appliance commands — manage the descriptions of the appliances registered at
the federation.

• Deployment document commands — manage the contents of the deployment
document in order to submit applications.

• Network commands — inspect and manage the network resources on the federa-
tion provided by the cloud providers.

• Storage commands — inspect and manage the storage resources on the federation
provided by the cloud providers.

• Image commands — manage the image files, i.e., the files containing the vir-
tual file systems that can be used by the virtual machines to boot. Using these
commands, users can upload images to the federation or register images available
elsewhere for download (e.g. in the GAFS), allowing transparent access to the
computation providers.

• Reporting commands — enable the users to obtain the resource usage reports
from the federation.

The extended description of all commands (purpose and parameters) is reported in
Appendix B. Since by ordinary security requirements not all actions are allowed to all
users, the appendix also lists for each group of commands which roles they are allowed
to, with respect to the three standard roles defined in a Contrail federation (federation
coordinator, cloud administrator, and normal user).

93

6 Conclusion
This document defined what a Contrail Cloud Federation is, how it works, and proposed
both an implementation architecture and several interfaces to access it. The analysis in this
document introduces a major innovative contribution on the concept and mechanisms of
a federation of Cloud providers. Federating Cloud Providers under a single Identity Man-
agement is an ambitious goal in itself, but Contrail adds to this the idea of coordinating
the providers through SLAs, in order to offer a common view and a common SLA to the
final user. SLA splitting and SLA coordination are the central research topics supporting
this provider coordination.

The features of Cloud Federations are a major Contrail selling point. The analysis
reported in this deliverable is just the initial step in the Contrail research path. The next
step will be to actually implement a first release, that will be based on the results reported
in this deliverable. Contrail Case Studies will exploit this first release and provide feed-
backs which will be taken into account in planning the second relelase, along with further
solutions and issues that will surface in the first implementation, as well as to research
results achieved in the meantime.

The analysis carried on in this document still leaves some open issues, such as the
positioning of the Federation entity as a business entity (which may not be unique) and the
overall shape of the economic interactions among the Provider, each on itself a separated
business entity. Risk management strategies have to be devised to minimize the federation
business risk implied by committing on the Quality of the offered Services. Strategies to
maximize the Federation’s profit have to be studied, as well as their relationship to users’
satisfaction. These and other issues will be further investigated and taken into account in
the next period.

94

A Federation API REST Resources

In Contrail, the federation exposed a RESTful API towards clients. Like in any proper
RESTful interface, we define a set of resources that are addressable using unique URIs.
In this section we provide the list, the description and the details of usage of the resources.

Resource: user
Attributes: Comment
username
password
group (federation coordinator, provider admin,

cloud user, ...)
role
institution
status (application, active, banned)

Resources owned by user:
sla
usage policy
Use cases:
Service checks authentication (password, certificate, ...).
Admin adds a new user.
User changes its profile (attributes).
User uploads or manipulates own credentials used for cloud providers.
Description:
The resource represents a collection of users, who log into the federation, manage the state
of the federation (subject to access control) and consume the cloud provider resources.

95

Resource: provider
Attributes: Comment
provider name/id
provider’s access point
type: contrail, external
public certificate / service credential
reputation the level of provider’s reputation, modifiable

by federation only
storage drivers the list of the drivers supported for storage
networking drivers the list of the supported networking drivers
compute drivers the list of the supported computation drivers

Resources owned by provider:
SLA template
negotiation
Use cases:
Federation admin adds a new provider. The provider becomes active in the federation.
The federation admin updates attributes (access point, ...).
Description:
A cloud provider brings cloud resources to the federation. This resource provides the means
for the provider to indicate important details regarding the use of its resources, and the
federation can also maintain its relationship towards the provider, such as a level of the
provider’s reputation.

Resource: SLA template
Attributes: Comment
provider the provider offering guarantees covered by

the template (optional)
document the document (XML, JSON, ...) describing

the contents of the template

Use cases
A provider admin adds a new SLA template
A federation coordinator provides an SLA template
A user can obtain a list of available templates.
A user can use additional parameters of a GET request to filter a list of the available tem-
plates by their metadata values.
A user can obtain the template contents.
Description:
The SLA templates are the starting point of negotiations between the user and the cloud
provider. It is a document containing generic or default values for the terms as well as the
range of permissible values. The cloud providers need to register their SLA templates, but
the federation coordinator can also provide additional SLA templates not associated with
any specific provider, but which should be compatible with one or more providers’ SLA
templates.

96

Resource: SLA
Attributes: Comment
agreed at
expires at
owner
document the document (XML, JSON, ...) describing

the contents of the SLA
ovf ids

Use cases:
Created as a result of a successful negotiation (immutable for POST, PUT).
A service can consult a relevant part of the agreed terms or the whole document.
A user can get a list of the active SLAs.
A user can use additional parameters of a GET request to filter a list of the available SLAs
by their metadata values.
Description:
The SLA represents an outcome of the successful negotiation and, within its validity time
range, the terms that are in effect. It provides the services the means for querying terms
and constraints, as well as a reference for actions that are subject to constraints in the SLA
terms.

Resource: negotiation
Attributes: Comment
initiator the party (user, service) who started the nego-

tiation
provider the owner of the capabilities to be negotiated
status at initiator, at provider, succeeded, failed
rounds
sla template id the id of the original SLA template (can be

void)
negotiation offer the current SLA offer

Use cases:
The user or service POSTs an SLA offer (an SLA template with parameters filled to the
initial parameter values).
The user or service checks for status of negotiation in progress.
The provider PUTs new values as a counteroffer to the current user’s offer.
The user or service PUTs new values as a counteroffer to the current provider’s offer.
The user or service PUTs new values to trigger re-negotiation of already negotiated terms.
Description:
Negotiation is a resource that keeps the status of an on-going negotiation of SLA template
(offer) between two parties.

97

Resource: ovf
Attributes: Comment
sla the reference to the SLA the appliance is a

part of (optional)
document the OVF describing the appliance

Resources owned by ovf:
appliance
Use cases
User or service POSTs a new OVF to be used with an existing agreed SLA.
User or service requests an OVF deployment (i.e., deployment of resources described in the
OVF).
User or service can obtain an OVF that can be used for an SLA
Description:
A description of one or more appliances in the form of an OVF document. The OVF can be
associated with an SLA.

Resource: deployment document
Attributes: Comment
document the document describing the deployment

Use cases
The VEP services retrieve the deployment document.
The user updates the deployment document.
Description:
This resource provides access to the deployment document, which contains features and
functionality which add to the standard ones appearing either in an OVF or an SLA doc-
ument. The federation generates the document automatically, but the users can choose to
submit their own or alter the created one. The deployment document can be linked to OVFs
or SLAs.

Resource: appliance
Attributes: Comment
ovf the reference to the OVF the appliance is a

part of
id the ID, within the OVF, of the appliance

Use cases
User or service POSTs a new OVF to be used with an existing agreed SLA.
User or service requests an OVF deployment (i.e., deployment of resources described in the
OVF).
User or service can obtain an OVF that can be used for an SLA
Description:
A description of an appliance in the form of an OVF document. The OVF can be associated
with an SLA.

98

Resource: image
Attributes: Comment
creator
file name
providers the providers where the image is available at
file hash
location path, store or URL to the image

Use cases
User uploads an image to providers/federation, providing the list of providers and their
respective image stores to be used.
User stores an image to the GAFS volume, then references the global path for the image to
be loaded into the providers’ image stores.
Cloud provider (a service) provides a status of an image if it is stored locally at the provider.
Description:
Represents a virtual machine image containing the OS and other data necessary for the
virtual machine to run. The image may appear on different providers using different image
stores, and each such instance has its own instance of the image resource, but they all have
the same value of the file hash. The resource may also describe an image with no
specific path or image store. In this case, another instance with the same file hash
needs to exist on the target provider.

Resource: application
Attributes: Comment
owner
status
running vms

Resources owned by application:
notification
Use cases
As VMs get deployed with appliances within an SLA, the federation obtains the information
on the status of the VMs.
The user or service can obtain the status of the application and links to the running appli-
ances (VMs).
Description:
Represents the state of the application.

Resource: usage policy
Attributes: Comment
cloud provider id
policy document

Use cases
A user can set and modify the document defining policies of usage for each cloud provider.

99

Resource: notification
Attributes: Comment
event id the id of the event
notification types a list of active notification types (e.g., e-mail,

web-interface)

Use cases
A user enables the notification of an event (e.g., a job finished) by POSTing to this resource.
A user cancels notifications by DELETEing the related instance.
To obtain a list of available event ids, the user can GET the notification resource subordinate
to an application instance.
Description:
With the notification resources, the users can discover which events they can be notified of
as they occur while running an application on the providers. The users can enable specific
notifications to be sent to their e-mail or appear in the web interface.

Resource: report
Attributes: Comment
the report content A structured output containing the resource

usage report.

Use cases
A user gets the resource usage for its account in the past month.
A user gets the resource usage for its account in a given time period.
A resource provider administrator gets the usage of the resources it provides for a given
time period.
Description:
A read-only resource providing access to the resource usage reports.

Resource: cloud provider membership
Attributes: Comment
cloud provider id
user credentials
membership status (active, disabled, expired)
cost the cost the user has for being a user of the

provider

Use cases
A user can upload pre-existing credentials for the given cloud provider or have the creden-
tials be created for the user.
A user can decide whether to actively use the particular provider’s resources or exclude it
from being selected.

100

Resource: network
Attributes: Comment
name the name of the network
driver VIN or other network driver
type fixed or ranged
leases the list of MAC and IP address pairs
gateway
dns
multiprovider indicates whether this network can span mul-

tiple providers (implies VPN between nodes
and globally assignable IPs)

provider the provider owning this network (optional)

Use cases
The resource provider registers the network it provides to the federation.
The federation creates a new network based on the OVF created at the ovf resource.
A user references this network in the appliance definition.
Description:
Represents a virtual network that the appliances can connect to. The model permits two
types of network definitions: one is the network describing an actual resource a specific
provider is capable of connecting to the virtual machine. A more general representation is
not owned by any provider, but contains the information that can be matched to that of a
specific provider, and can be therefore used for linking to a federation-level appliance.

Resource: virtual machine
Attributes: Comment
name
appliance reference of the appliance that the virtual ma-

chine has been instantiated from
state the current state of the virtual machine
actions the sub-resource for invoking actions on the

virtual machine

Use cases

Description:
Represents the virtual machines running on a provider as a part of an application. The re-
source is read-only, except for the action attribute which provides the means for changing
the state of the virtual machine.

101

Resource: storage
Attributes: Comment
providers list of providers supporting this storage
state

Use cases

Description:
Represents the availability and the state of the virtual storage (i.e., a set of images and other
virtual drives).

Resource: image provider (link)
Attributes: Comment
image store the image store on the provider hosting this

image
path the path to the image
state the stat of the image

Use cases
A user or a service associates an existing image registered at the federation with the
provider.
A user, service or the provider can disassociate the image from the provider.
Description:
Details how an image registered at the federation level can be accessed at this provider.

102

B Federation API CLI Reference

B.1 Commands by category
In this appendix we provide a reference of the commands that make up the CLI tool set
for manipulating entities in the federation. We grouped the commands into categories
based on the entities they influence. At the end of the appendix, section B.2 describes
how Contrail essential roles affect the different groups of commands.

B.1.1 Federation users commands

These commands list and manage the information about the users and their profiles at the
federation. The commands therefore interface the identity management for the users.

• cf-users-list
returns a list of all users.

• cf-users-describe user-id
provides the details of the user whose user id is user-id.

• cf-users-describe -u username
provides the details of the user whose user name is username.

• cf-users-add -u username -p password -G group -r role
create a new entry for the user with the user name username, assign the password
password, the user becomes a member of the group group and assumes role
role. The -G and -r switches may appear multiple times.

• cf-users-modify user-id [-p new-password] [-add-group new-group]
[-remove-group old-group] [-add-role new-role] [-remove-role
old-role]
modify the entry of the user whose user id is user-id. The command changes the
attributes related to the switches provided with the command. With the -add-group
and -add-role, the user is added to the new-group and new-role, respec-
tively. With -remove-group and remove-role, the user is removed from the
old-group and old-role, respectively.

• cf-users-modify -u username [-p new-password] [-add-group
new-group] [-remove-group old-group] [-add-role new-role]
[-remove-role old-role]
modify the entry of the user whose user name is username. The command
changes the attributes related to the switches provided with the command. With
the -add-group and -add-role, the user is added to the new-group and
new-role, respectively. With -remove-group and remove-role, the user
is removed from the old-group and old-role, respectively.

103

• cf-users-delete user-id
remove an entry describing the user with the user id user-id.

• cf-users-delete -u username
remove an entry describing the user with the user name username.

• cf-users-status user-id
returns the current status of the user with id user-id.

• cf-users-status user-id new-status
change the status (active, blocked, ...) of the user with the user id user-id to
status new-status.

B.1.2 Cloud provider commands

The following commands manage the view the federation has over the cloud providers.
They can be used by the provider administrators in order to register the cloud access
points and the related parameters the federation needs to observe when interacting with
the provider. The federation coordinators can use the commands to regulate usage policies
and overall cloud provider status in the federation.

• cf-providers-list
returns a list of all the registered providers.

• cf-providers-describe provider-id
lists the details of the provider with the provider id provider-id.

• cf-providers-add -n provider-name -a access-point -t provider-type
-c credentials-file
adds a new entry describing a provider to join the federation. The command re-
quires a supplied provider name provider-name, the provider’s access point
(URL of the API) access-point, in provider-type it needs to receive
whether the provider is contrail or external, and the credentials-file
is a local path do the provider’s credential that the command will upload with the
request.

• cf-providers-modify [-n new-provider-name] [-a new-access-point]
[-t new-provider-type] [-c new-credentials-file]
replaces the value of one or more of the referenced attributes with their respective
new values: a replacement for supplied provider name new-provider-name,
the changed provider’s access point (URL of the API) new-access-point, a
change of its type new-provider-type, and the local path do the replacement
provider’s credential new-credentials-file.

• cf-providers-delete provider-id
removes the record describing the provider with provider id provider-id from

104

the federation. After removal, the provider can no longer participate in the federa-
tion’s activities.

• cf-providers-status provider-id
returns the current status of the provider with id provider-id.

• cf-providers-status provider-id new-status
changes the status of the provider in the federation to new-status. The status
can be active or disabled.

• cf-providers-policy provider-id
returns the current policy assigned to the provider with the provider id provider-id.

• cf-providers-policy provider-id -f new-policy-file
assigns the policy contained in the local file new-policy-file to be used for
the provider with the provider id provider-id.

B.1.3 SLA template commands

The following commands can be used for inspecting and managing the SLA templates.

• cf-slats-list
lists the SLA templates that can be used for negotiations.

• cf-slats-list provider-id
lists the SLA templates that can be used for negotiations, offered only by the
provider with the id provider-id.

• cf-slats-query constraint-expression
returns a list of the SLA templates matching the given constraint-expr.

• cf-slats-describe slat-id
returns the contents of the document representing the SLA template with id slat-id.

• cf-slats-add -f slat-file [-p]
adds to the list of the available SLA templates the document contained in the local
file slat-file. If the user issuing the command is a provider’s administrator,
the optional switch -p will cause the template to be associated with this provider
only.

• cf-slats-delete slat-id
removes the entry containing the SLA template with id slat-id, causing it to no
longer be available.

105

B.1.4 SLA commands

The following commands can be used for inspecting and managing the SLAs in the fed-
eration SLA registry.

• cf-slas-list
lists the available SLAs.

• cf-slas-describe sla-id
returns the document describing the SLA referred to with id sla-id. Depending
on the current status of the SLA, the command returns an active SLA or the latest
offer from the federation if the SLA is in the process of being negotiated.

• cf-slas-delete sla-id
terminates and removes the SLA with the id sla-id.

• cf-slas-negotiation-start -f slat-file
initiates negotiation with the federation using the SLA template contained in the
slat-file. The supplied SLA template needs to be a valid template document,
filled by the user to express the initial requests. The command returns the id of the
created SLA.

• cf-slas-negotiation-resubmit sla-id -f slat-file
the command used when the federation presents an offer in the negotiation process.
The contents of the file slat-file should represent a template compatible with
the one referred to with sla-id, and the values should be the next step in the
negotiation.

• cf-slas-negotiation-accept sla-id [-d dd-id]
if the sla-id refers to an SLA that is in the negotiation with the federation, but
has the status accepted, this command confirms the SLA as accepted by the user.
The command ends the negotiation. The optional switch -d can be used to indicate
that the user wants to supply a custom previously submitted deployment document
identified as dd-id.

• cf-slas-negotiation-reject sla-id
if the sla-id refers to an SLA that is in the negotiation with the federation, but
has the status accepted, the user rejects the SLA, ending the negotiation.

B.1.5 Appliance commands

The following commands manage the descriptions of the appliances registered at the fed-
eration.

• cf-appliances-list
lists the available appliances.

106

• cf-appliances-list provider-id
lists the appliances available by the provider with ID provider-id.

• cf-appliances-describe appliance-id
returns the details of the appliance with id appliance-id.

• cf-appliances-add -f ovf-file [-p]
submits a new set of appliances as described in the local OVF ovf-file. The
command returns a list of IDs of the newly created appliances. If the user is a cloud
provider administrator, the optional -p switch instructs to relate the new appliances
to this provider only.

• cf-appliances-delete appliance-id
removes the appliance referred to as appliance-id.

B.1.6 Deployment document commands

The deployment document is a special auxiliary document that can supplement the func-
tionality or features of either OVF documents or the SLA documents. Normally, the
federation constructs this document automatically after the negotiation, but the user has
an option to supply a custom one. The user can use the following commands to inspect
and manipulate the deployment document.

• cf-dd-list
returns a list of the user’s own deployment documents.

• cf-dd-describe dd-id
returns the contents of the deployment document with id dd-id. The output in-
cludes the references (ids) of any OVF and SLA documents that the deployment
document is linked to.

• cf-dd-add -f document
submits the contents of the local file document as a new deployment document.
The command returns the id of the created document.

• cf-dd-link dd-id [-o ovf-id] [-s sla-id]
creates a link between the deployment document with id dd-id with an OVF or
SLA. If the user supplies the -o switch, the document is linked with the OVF with
id ovf-id. Similarly, if the user supplies the -s switch, the deployment document
will be associated with the SLA with id sla-id.

• cf-dd-unlink dd-id [-o ovf-id] [-s sla-id]
removes links, if they exist, between the deployment document with id dd-id
with the OVF with id ovf-id or the SLA with id sla-id.

• cf-dd-modify dd-id -f new-document
replaces the contents of the deployment document identified as dd-id with the
contents of the local file new-document.

107

• cf-dd-delete dd-id
removes the deployment document identified as dd-id. This command is only
possible if the deployment document to be removed has been supplied by the user
rather than created automatically.

B.1.7 Network commands

These commands enable inspecting and management of the network resources on the
federation provided by the cloud providers.

• cf-networks-list
returns a list of the available networks.

• cf-networks-list provider-id
returns a list of the networks available at the provider referred to as provider-id.

• cf-networks-describe network-id
returns a description of the network referred to as network-id.

• cf-networks-add -f template-file [-p]
creates a record describing the network based on the submitted local network tem-
plate file template-file. The format of the template file depends on the type
of network to be offered. The command returns an id of the newly created network.
If the user issuing the command is a provider administrator, an optional switch -p
tells the federation this network is to be offered by this provider only.

• cf-networks-delete network-id
removes the record describing the network referred to as network-id, making it
unavailable.

• cf-networks-modify network-id -f template-file
modifies the parameters of the network by supplying the new values to take effect
in a local file template-file.

B.1.8 Storage commands

These commands enable inspecting and management of the storage resources on the fed-
eration provided by the cloud providers.

• cf-storages-list
returns a list of the available storages.

• cf-storages-describe storage-id
returns a description of the storage referred to as storage-id.

108

• cf-storages-add -f template-file [-p]
creates a new storage as specified in the local storage template file template-file.
The format of the template file depends on the type of storage to be offered. The
command returns an id of the newly created storage. If the user issuing the com-
mand is a provider administrator, an optional switch -p tells the federation this
storage is to be offered by this provider only.

• cf-storages-delete storages-id
removes the record describing the storages referred to as storages-id, making
it unavailable.

• cf-storages-status storage-id
returns the current status of the storage referred to as storage-id.

• cf-storages-status storage-id new-status
changes the status of the storage with ID storage-id to the new status new-status.

• cf-storages-modify storage-id -f template-file modifies the
parameters of the storage storage-id by supplying the new values to take effect
in a local file template-file.

B.1.9 Image commands

The image commands manage the files containing the virtual file systems that can be
used by the virtual machines. Using the commands, the users can upload an image to the
federation, or register images available for downloads elsewhere (e.g., in the GAFS) for
the providers to transparently access.

• cf-images-list
retrieves the list of the available images.

• cf-images-list provider-id
retrieves the list of the images at the provider with id provider-id available.

• cf-images-describe image-id
shows the details of the image referred to as image-id.

• cf-images-add -f image-file [-n name] [-d description]
upload the contents of the local file image-file to become the new image. The
command optionally takes a user-friendly name name for the image and a short
description description to be assigned to the image. The command returns an
id of the newly created image record.

• cf-images-add -l image-location [-n name] [-d description]
create a new image from the one available at location image-location. The
location can be an URL to an external store or a file in the GAFS volume. The
command optionally takes a user-friendly name name for the image and a short

109

description description to be assigned to the image. The command returns an
id of the newly created image record.

• cf-images-modify image-id [-n new-name] [-d new-description]
modifies the information of an image with the id image-id. If the -n switch is
provided, the command assigns the new name new-name to the image. Similarly,
if the -d switch is provided, the new-description will replace the current
description of the image.

• cf-images-delete image-id
deletes the reference of an image with the id image-id, making it unavailable.

• cf-images-status image-id
returns the current status of the image referred to as image-id.

B.1.10 Virtual machine commands

The following commands provide the means to inspect and manage at the federation level
the state of the virtual machines that run on the provider.

• cf-vms-list
returns a list of the VMs.

• cf-vms-describe vm-id
returns the details of the VM referred to as vm-id.

• cf-vms-status vm-id
returns the status of the VM referred to as vm-id.

• cf-vms-status vm-id new-status
changes the status of the VM referred to as vm-id to become new-status.

• cf-vms-deploy appliance-id sla-id
instantiates a new VM based on the appliance appliance-id and to be deployed
as a part of the SLA sla-id.

B.1.11 Reporting commands

The following commands enable the users to obtain the resource usage reports from the
federation.

• cf-reports-user [-u user-id] [-t report-type] [-s start-date]
[-e end-date]
returns a report containing an aggregation showing the user’s activities for a given
period. If no -u switch is provided, the command assumes the current user’s id
in place of user-id. The report-type can either be monthly or yearly,
covering the usage in the current month or year, respectively. Instead of -t, the

110

user can provide the start date start-date and the end date end-date to limit
the time span of the report.

• cf-reports-provider [-p provider-id] [-t report-type] [-s
start-date] [-e end-date]
returns a report containing an aggregation showing the federation users’ activities
on the provider’s resources for a given period. The usage of the command is similar
to that of cf-report-user.

B.2 Command usage permissions
The command-line interface enables the full functionality of the federation service, which
includes a number of powerful actions. The related commands are subject to access rights
check, which occurs within the federation service. However, for convenience, in Table 8
we provide the mapping between the user’s role and the availability of the commands for
the given role.

In the ”Command“ column, wherever we find that the same access rules apply for
multiple commands, we provide all the commands. For brevity, however, we omit the
prefix of the command in all but the first occurrence, since we assume all the commands
share the same prefix. For instance, the same access control rules apply for the commands
cf-users-delete and cf-users-add, thus they share a row in the table 8, but in
the ”Command“ column, they are shown as ”cf-users-delete, -add“.

The main part of the table shows whether the users of a particular role (Federation co-
ordinator, Provider administrator or Federation user) can use the command in full (”Yes“),
with restrictions (defined with a comment) or not at all (”N/A“).

Command Federation
coordinator

Provider ad-
ministrator

Federation
user

cf-users-list, -describe,
-status, -modify

Yes Own ac-
count only

Own ac-
count only

cf-users-delete, -add Yes N/A N/A
cf-providers-list,
-describe, -modify, -status

Yes Own record
only

N/A

cf-providers-policy, -add,
-delete

Yes N/A N/A

cf-slats-list, -query,
-describe

Yes Yes Yes

cf-slats-add, -delete Yes Provider’s
own SLATs

N/A

cf-slas-list, -describe Yes Yes Yes
cf-slas-delete N/A N/A Own SLAs
cf-slas-negotiation-start,
-resubmit, -accept, -reject

N/A N/A New, own
SLAs

111

Command Federation
coordinator

Provider ad-
ministrator

Federation
user

cf-appliances-list,
-describe, -add

Yes Yes Yes

cf-appliances-delete Yes Provider’s
appliances

Own appli-
ances

cf-networks-list -describe Yes Yes Yes
cf-networks-add, -delete,
-modify

Yes Provider’s
networks

N/A

cf-storages-list -describe Yes Yes Yes
cf-storages-add, -delete,
-modify

Yes Provider’s
storages

N/A

cf-images-list, -describe,
-status (reading)

Yes Images on
provider or
federation

Public and
own images

cf-images-add, -delete,
-status (changing)

Yes Provider’s
images

New or own
images

cf-vms-list,
cf-vms-describe, -status
(reading)

N/A VMs run-
ning on
provider

Own VMs

cf-vms-deploy, -status
(changing)

N/A N/A Own VMs

cf-reports-user Yes Usage on
provider

Own usage

cf-reports-provider Yes Own Usage N/A
Table 8: Availability of the commands to the users based on their
roles

References
[1] Ed. (JanRain); N. Sakimura (NRI) D. Recordon (Six Apart); M. Jones Microsoft);

J. Bufu, Ed. (Independent); J. Daugherty. OpenID Provider Authentication
Policy Extension 1.0, December 2009. http://openid.net/specs/
openid-provider-authentication-policy-extension-1_0.
html.

[2] Marco Dorigo and Christian Blum. Ant colony optimization theory: A survey. The-
oretical Computer Science, 344(2-3):243 – 278, 2005.

[3] Stephan Fowler. HTTPsec Authentication Protocol. WWW, September
2006. http://www.httpsec.com/1.0/ – original URL retrieved via web.
archive.org.

112

http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html
http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html
http://openid.net/specs/openid-provider-authentication-policy-extension-1_0.html
http://www.httpsec.com/1.0/
web.archive.org
web.archive.org

[4] Fred Glover. Tabu search: A tutorial. The Practice of Mathematical Programming,
20(4):74–94, July-August 1990.

[5] GNU Linear Programming Kit. Web Site. http://www.gnu.org/
software/glpk/.

[6] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, 1 edition, January 1989.

[7] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics –
A Foundation for Computer Science. Addison-Wesley, 3rd edition, May 1989.

[8] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated an-
nealing. Science, 220(4598):671–680, May 1983.

[9] S. Tuecke (ANL); V. Welch (NCSA); D. Engert (ANL); L. Pearlman (USC/ISI);
M. Thompson (LBNL). Internet X.509 Public Key Infrastructure (PKI) Proxy Cer-
tificate Profile, June 2004. http://www.ietf.org/rfc/rfc3820.txt.

[10] Thijs Metsch and Andy Edmonds. Open Cloud Computing Interface - Infrastruc-
ture, May 25, 2011. http://forge.gridforum.org/sf/go/doc16265?
nav=1.

[11] Thijs Metsch and Andy Edmonds. Open Cloud Computing Interface - RESTful
HTTP Rendering, May 25, 2011. http://forge.gridforum.org/sf/go/
doc16263?nav=1.

[12] John Kemp (Nokia); Scott Cantor (Internet2); Prateek Mishra (Principal Iden-
tity); Rob Philpott (RSA Security); Eve Maler (Sun Microsystems). Authentica-
tion Context for the OASIS Security Assertion Markup Language (SAML) V2.0,
March 2005. http://docs.oasis-open.org/security/saml/v2.0/
saml-authn-context-2.0-os.pdf.

[13] OAuth web site. http://oauth.net/.

[14] Open Virtualization Format Specification. DMTF Standard, 2009.
http://www.dmtf.org/sites/default/files/standards/
documents/DSP0243_1.0.0.pdf.

[15] CONTRAIL Project. Deliverable D10.1 - First specification of the system architec-
ture, August 2011.

[16] CONTRAIL Project. Deliverable D2.1 - Requirements on Federation Management,
Identity and Policy Management in Federations, March 2011.

[17] CONTRAIL Project. Deliverable D3.2 - SLA Management Services Terms and
Initial Architecture, August 2011.

113

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.ietf.org/rfc/rfc3820.txt
http://forge.gridforum.org/sf/go/doc16265?nav=1
http://forge.gridforum.org/sf/go/doc16265?nav=1
http://forge.gridforum.org/sf/go/doc16263?nav=1
http://forge.gridforum.org/sf/go/doc16263?nav=1
http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf
http://oauth.net/
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_1.0.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_1.0.0.pdf

[18] CONTRAIL Project. Deliverable D7.1 - Security Requirements, Specification and
Architecture for Virtual Infrastructures, March 2011.

[19] SLA@SOI Project. Deliverable D.A5a, Foundations for SLA Management. D.
A5a-M26-SLAManagementFoundations.pdf.

[20] George Reese. The Good, The Bad, The Ugly of REST,
June 2011. http://broadcast.oreilly.com/2011/06/
the-good-the-bad-the-ugly-of-rest-apis.html.

[21] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Series.
O’Reilly, 2007.

[22] O. Sinnen and L. Sousa. A Classification of Graph Theoretic Models for Parallel
Computing. Technical Report RT/005/99, Instituto Superior TÃl’cnico, Technical
University of Lisbon, Lisbon, Portugal, May 1999.

[23] SLA@SOI Consortium Main Web Site. http://sla-at-soi.eu/.

[24] SLA@SOI SLA Model. http://sourceforge.net/apps/trac/
sla-at-soi/wiki/SLA%20Model%20%3A%20The%20Model.

[25] W. Timothy Polk William E. Burr, Donna F. Dodson. NIST Special Publication
800-63, Electronic Authentication Guideline, April 2006. http://csrc.nist.
gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf.

[26] Apache Xerces web site. http://xerces.apache.org/.

114

D.A5a-M26-SLAManagementFoundations.pdf
D.A5a-M26-SLAManagementFoundations.pdf
http://broadcast.oreilly.com/2011/06/the-good-the-bad-the-ugly-of-rest-apis.html
http://broadcast.oreilly.com/2011/06/the-good-the-bad-the-ugly-of-rest-apis.html
http://sla-at-soi.eu/
http://sourceforge.net/apps/trac/sla-at-soi/wiki/SLA%20Model%20%3A%20The%20Model
http://sourceforge.net/apps/trac/sla-at-soi/wiki/SLA%20Model%20%3A%20The%20Model
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://xerces.apache.org/

	Introduction
	Scope of the document
	Document Structure
	Terms definitions

	High-Level Federation Functionality
	Key objectives
	Federation Non-functional Requirements

	Federation Model
	Identity Management
	Single sign-on
	Federated Accounting
	User Account Auditing
	Federation User Identity Protection
	Levels of Assurance

	Provider Management
	Application Mapping and Deployment
	SLA coordination
	Security Policies
	User Policies
	Cloud Provider Security Policies

	Federation Coordinator
	High Level Scenarios
	Preliminary release
	Basic Scenario
	Advanced Scenario

	Roadmap
	Features provided by the preliminary release
	Features provided by the first release
	Features provided by the final release

	Architecture
	Overview
	Structural Description
	Layers
	Core Federation Modules
	SLA Organizer
	Security Modules
	Adapter Modules
	SLA Management

	Behavioural Description
	Deployment Description

	Algorithms
	Application Model
	Abstract Task Interaction Graph

	OVF generation from SLA / SLA generation from OVF
	Checking SLA-OVF compliance
	SLA-based provider lookup
	SLA splitting
	Service-based SLA splitting
	Availability-Based SLA Splitting
	Performance-based SLA Splitting
	Further issues of SLA splitting

	SLA Coordination
	Baseline coordination
	Migration-based coordination
	Rebalancing coordination

	Mapping
	Provisioning

	Federation Interfaces
	Web Interface
	Federation Administration
	Provider Administration
	Cloud Federation

	REST Interface
	Addressing the entities
	HTTP Verbs
	Contrail API resources
	HTTP rendering
	Relation of the Contrail Federation API with the OCCI
	Obtaining the resource usage
	Authentication and Authorisation using REST

	Command-line Interface

	Conclusion
	Federation API REST Resources
	Federation API CLI Reference
	Commands by category
	Federation users commands
	Cloud provider commands
	SLA template commands
	SLA commands
	Appliance commands
	Deployment document commands
	Network commands
	Storage commands
	Image commands
	Virtual machine commands
	Reporting commands

	Command usage permissions

	Bibliography

